Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional ecdysone receptor is the product of EcR and Ultraspiracle genes

Abstract

ALTHOUGH the biological activity of the insect moulting hormone ecdysone, is manifested through a hormonally regulated transcriptional cascade associated with chromosomal puffing1–3, a direct association of the receptor with the puff has yet to be established. The cloned ecdysone receptor4 (EcR) is by itself incapable of high-affinity DNA binding or transcriptional activation. Rather, these activities are dependent on heterodimer formation with Ultraspiracle5 (USP) the insect homologue of vertebrate retinoid X receptor6. Here we report that native EcR and USP are co-localized on ecdysone-responsive loci of polytene chromosomes. Moreover, we show that natural ecdysones selectively promote physical association between EcR and USP, and conversely, that high-affinity hormone binding requires both EcR and USP. Replacement of USP with retinoid X receptor produces heterodimers with distinct pharmacological and functional properties. These results redefine the ecdysone receptor as a dynamic complex whose activity may be altered by combinatorial interactions among subunits and ligand.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clever, U. & Karlson, P. Expl Cell Res. 20, 623–626 (1960).

    Article  CAS  Google Scholar 

  2. Ashburner, M. in Developmental Studies on Giant Chromosomes (ed. Beermann, W.) 101–147 (Springer, New York, 1972).

    Book  Google Scholar 

  3. Ashburner, M., Chihara, C., Meltzer, P. & Richards, G. Cold Spring Harbor Symp. quant. Biol. 38, 655–662 (1974).

    Article  CAS  Google Scholar 

  4. Koelle, M. R. et al. Cell 67, 59–77 (1991).

    Article  CAS  Google Scholar 

  5. Yao, T.-P., Segraves, W. A., Oro, A. E., McKeown, M. & Evans, R. M. Cell 71, 63–72 (1992).

    Article  CAS  Google Scholar 

  6. Mangelsdorf, D. J. et al. Genes Dev. 6, 329–344 (1992).

    Article  CAS  Google Scholar 

  7. Christianson, A. M. K. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11503–11507 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Thomas, H. E., Stunnenberg, H. G. & Stewart, A. F. Nature 362, 471–475 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Riddihough, G. & Pelham, H. R. B. EMB0 J. 6, 3729–3734 (1987).

    Article  CAS  Google Scholar 

  10. Christopherson, K. S., Mark, M. R., Bajaj, V. & Godowski, P. J. Proc. natn. Acad. Sci. U.S.A. 89, 6314–6318 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Allan, G. F. et al. J. biol. Chem. 267, 19513–19520 (1992).

    CAS  PubMed  Google Scholar 

  12. Cherbas, P., Cherbas, L., Lee, S.-S. & Nakanishi, K. Proc. natn. Acad. Sci. U.S.A. 85, 2096–2100 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Koelle, M. R., Arbeitman, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. (in the press).

  14. Yang, N., Schüle, R., Mangelsdorf, D. M. & Evans, R. M. Proc. natn. Acad. Sci. U.S.A. 88, 3559–3563 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Forman, B. M., Casanova, J., Raaka, B. M., Ghysdael, J. & Samuels, H. H. Molec. Endocr. 6, 429–442 (1992).

    CAS  PubMed  Google Scholar 

  16. Burtis, K. C., Thummel, C. S., Jones, C. W., Karim, F. D. & Hogness, D. S. Cell 61, 85–99 (1990).

    Article  CAS  Google Scholar 

  17. Thummel, C. S., Burtis, K. C. & Hogness, D. S. Cell 61, 101–111 (1990).

    Article  CAS  Google Scholar 

  18. Segraves, W. A. & Hogness, D. S. Genes Dev. 4, 204–219 (1990).

    Article  CAS  Google Scholar 

  19. Talbot, W. S., Swyryd, E. A. & Hogness, D. S. Cell 73, 1323–1337 (1993).

    Article  CAS  Google Scholar 

  20. Hollenberg, S. M. & Evans, R. M. Cell 55, 899–906 (1988).

    Article  CAS  Google Scholar 

  21. Cherbas, L., Lee, K. & Cherbas, P. Genes Dev. 5, 120–131 (1991).

    Article  CAS  Google Scholar 

  22. Zink, B., Engström, Y., Gehring, W. J. & Paro, R. EMBO J. 10, 153–172 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, TP., Forman, B., Jiang, Z. et al. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479 (1993). https://doi.org/10.1038/366476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366476a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing