Letter | Published:

Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals

Naturevolume 366pages253256 (1993) | Download Citation

Subjects

Abstract

THE pathways by which silicate minerals transform to solutes, clays and amorphous solids are relevant to a wide range of natural, industrial and even medical concerns. For example, weathered layers on silicate may have a high sorptive capacity, affecting nutrient and contamination retention in soils; less obviously, such layers on inhaled silicate grains might affect their interaction with lung tissue. Here we report the observation, in dissolution experiments on a range of chain-silicate minerals, of the formation of a near-surface amorphous region enriched in silicon and hydrogen, and depleted in other metals. Raman spectroscopy and ion-beam elemental analysis show that portions of the polymeric silicate anion in this region spontaneously reconstruct to form a network that contains four-member silicate rings and areas of incipient crystallization. If hydrolysable metals interact with the silicate anion during this reconstruction, clays and amorphous products may form directly. This process complements traditional dissolution-precipitation pathways of mineral diagenesis1, as the silicon does not have to be present in solution before being incorporated into a growing secondary phase.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kittrick, J. A. (ed.) Soil Mineral Weathering (Van Nostrand Reinhold, New York, 1986).

  2. 2

    Petit, J.-C., Della Mea, G., Dran, J.-C., Schott, J. & Berner, R. A. Nature 325, 705–706 (1987).

  3. 3

    Casey, W. H., Westrich, H. R. & Arnold, G. W. Geochim. cosmochim. Acta 52, 2795–2807 (1988).

  4. 4

    Casey, W. H., Westrich, H. R., Arnold, G. W. & Banfield, J. F. Geochim. cosmochim. Acta 53, 821–832 (1989).

  5. 5

    Murphy, W. M. & Helgeson, H. C. Am. J. Sci. 289, 3137–3153 (1989).

  6. 6

    Bailey, A. & Reesman, A. L. Am. J. Sci. 271, 464–472 (1971).

  7. 7

    Rimstidt, J. D. & Dove, P. M. Geochim. cosmochim. Acta 50, 2509–2516 (1986).

  8. 8

    Luce, R. W., Bartlett, R. W. & Parks, G. A. Geochim. cosmochim. Acta 36, 35–50 (1972).

  9. 9

    Murphy, W. M. & Helgeson, H. C. Geochim. cosmochim. Acta 51, 3137–3153 (1987).

  10. 10

    Schott, J., Berner, R. A. & Sjoberg, E. L. Geochim. cosmochim. Acta 45, 2123–2135 (1981).

  11. 11

    Casey, W. H. & Bunker, B. in Mineral–Water Interface Geochemistry (eds Hochella, M. F. Jr & White, A. F.) 397–426 (Miner. Soc. Am., Washington DC, 1990).

  12. 12

    Furukawa, T., Fox, K. E. & White, W. B. J. Chem. Phys. 75, 3226–3237 (1981).

  13. 13

    Brinker, C. J., Tallant, D. R., Roth, E. P. & Ashley, C. S. J. non-cryst. Solids 82, 117 (1986).

  14. 14

    Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L. & Kirkpatrick, R. J. Phys. Chem. Glasses 29, 106–120 (1988).

  15. 15

    Galeener, F. L. J. non-cryst. Sol. 53, 2823–2830 (1989) (1982).

  16. 16

    Conjeaud, M. & Boyer, H. Cem. Concr. Res. 10, 61–70 (1980).

  17. 17

    Casey, W. H., Banfield, J. F., Westrich, H. R. & McLaughlin, L. Chem. Geol. 105, 1–15 (1993).

  18. 18

    Eggleton, R. A. & Boland, J. N. Clays Clay Miner. 30, 11–20 (1982).

  19. 19

    Banfield, J. F., Jones, B. F. & Veblen, D. R. Geochim. cosmochim. Acta 55, 2781–2793 (1991).

  20. 20

    Banfield, J. F. & Eggleton, R. A. Clays Clay Miner. 38, 77–89 (1990).

  21. 21

    Mazer, J. J., Bates, J. K., Bradley, J. P., Bradley, C. R. & Stevenson, C. M. Nature 357, 573–576 (1992).

  22. 22

    Taylor, H. F. W. Cement Chemistry 123–166 (Academic, New York, 1990).

  23. 23

    Güven, N. in Hydrous Phyllosilicates (ed. Bailey, S. W.) 531–535 (Miner. Soc. Am., Washington DC, 1988).

  24. 24

    Bales, R. C. & Morgan, J. J. Geochim. cosmochim. Acta 49, 2281–2288 (1985).

  25. 25

    Hume, L. A. & Rimstidt, J. D. Am. Miner. 77, 1125–1128 (1992).

  26. 26

    Knauss, K. G., Nguyen, S. N. & Weed, H. C. Geochim. cosmochim. Acta 57, 285–294 (1993).

  27. 27

    Wirth, G. S. & Gieskes, J. M. J. Coll. Interf. Sci. 68, 492–500 (1979).

  28. 28

    Dove, P. N. & Elston, S. F. Geochim. cosmochim. Acta 56, 4147–4156 (1992).

Download references

Author information

Affiliations

  1. Department of Land, Air and Water Resources and the Department of Geology, University of California, Davis, California, 95616, USA

    • William H. Casey
    •  & Giulio Ferruzzi
  2. Geochemistry Research, Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA

    • Henry R. Westrich
  3. Ion-Solids Interaction Division, Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA

    • Geroge W. Arnold
  4. Department of Geology, University of Wisconsin, Madison, Wisconsin, 53706, USA

    • Jillian F. Banfield

Authors

  1. Search for William H. Casey in:

  2. Search for Henry R. Westrich in:

  3. Search for Jillian F. Banfield in:

  4. Search for Giulio Ferruzzi in:

  5. Search for Geroge W. Arnold in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/366253a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.