Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of a metastable crystalline phase by twinning

Abstract

POLYMORPHISM of crystal structures—alternative crystal structures resulting from variations in ionic and molecular packing1 and conformation2—is important in a number of fields in solid-state chemistry, including biomineralization3 (in the mineral phases of calcium carbonate3, for example), polymer science (polypropylene4, for example), explosives (ammonium nitrate, lead azide5), nonlinear optical materials6, ceramics and catalysis (zeolites and metal oxides7). In the pharmaceutical and fine-chemicals industries, polymorphism is central to both production process design and product activity8. Here we show that crystal twinning can stabilize a crystal polymorph that is otherwise not the most stable form. We use electron microscopy, X-ray diffraction and Raman spectroscopy to show that the apparently indefinite persistence of a metastable polymorph of terephthalic acid can be explained on this basis. If twinning can be engineered, it may therefore provide a means for stabilizing crystal phases with useful physical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verma, A. R. & Krishna, P. Polymorphism and Polytypism in Crystals 33–60 (Wiley, New York, 1966).

    Google Scholar 

  2. Bernstein, J. & Hagler, A. T. J. Am. chem. Soc. 100, 673–681 (1978)

    Article  CAS  Google Scholar 

  3. Bischoff, J. L. & Fyfe, W. S. Am. J. Sci. 266, 65–79 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Keller, A., Goldbeck-Wood, G. & Hikosaka, M. J. chem. Soc., Faraday Disc., No. 95 (in the press).

  5. Hattori, K. & McCrone, W. Analyt. Chem. 28, 1791–1793 (1956).

    Article  CAS  Google Scholar 

  6. Hall, S. R. et al. J. Cryst. Growth 79, 745–751 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Subotic, B. et al. Zeolites 2, 135–142 (1982).

    Article  CAS  Google Scholar 

  8. Davey, R. J. in Crystal Growth in Science and Technology NATO ASI Ser. (Eds Arend, H. & Hulliger, J.) 217–224 (Plenum, New York, 1989).

    Book  Google Scholar 

  9. Bailey, M. & Brown, C. J. Acta crystallogr. 22, 387–391 (1967).

    Article  CAS  Google Scholar 

  10. Berkovitch-Yellin, Z. & Leiserowitz, L. J. Am. chem. Soc. 104, 4052–4064 (1982).

    Article  CAS  Google Scholar 

  11. Gerasirnov, V. P., Zharikov, N. K., Korobkov, V. S., Ovchinnikov, I. V. & Rud, L. V. Zh. Prikl. Spectroskopii 34, 308–311 (1981).

    Google Scholar 

  12. Saska, M. & Myerson, A. S. Cryst. Res. Technol. 20, 201–208 (1985).

    Article  CAS  Google Scholar 

  13. Bhat, H. L. Clarke, S. M., El Korashy, A., & Roberts, K. J. J. appl. Crystallogr. 23, 545–549 (1990).

    Article  Google Scholar 

  14. Ozaki, T. & Shigeyasu, M. Maruzen Sekiyu Giho 20, 81–90 (1975).

    CAS  Google Scholar 

  15. Ostwald, W. Z. phys. Chem. 22, 289–330 (1897).

    CAS  Google Scholar 

  16. Avrami, M. J. chem. Phys. 7, 1103–1112 (1939).

    Article  ADS  CAS  Google Scholar 

  17. Cardew, P. T., Davey, R. J. & Ruddick, A. J. J. chem. Soc. Faraday Trans. 80, 659–668 (1984).

    Article  CAS  Google Scholar 

  18. Mnjukh, Ju. V. Molec. Cryst. Liq. Cryst. 52, 201–218 (1979).

    Article  Google Scholar 

  19. Davey, R. J. et al. J. Phys. D 24, 176–185 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Davey, R. J. et al. J. chem. Soc., Faraday Trans. 88, 3461–3466 (1992).

    Article  CAS  Google Scholar 

  21. Davey, R. J., Harding, M. M. & Rule, R. J. J. Cryst. Growth. 144, 7–12 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davey, R., Maginn, S., Andrews, S. et al. Stabilization of a metastable crystalline phase by twinning. Nature 366, 248–250 (1993). https://doi.org/10.1038/366248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366248a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing