Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate


Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two related subfamilies (type I and type II PtdInsP-5-OH kinases, or PIP(5)Ks) based on their enzymatic properties and sequence similarities1. Here we have reinvestigated the substrate specificities of these enzymes. As expected, the type I enzyme phosphorylates PtdIns-4-P at the D-5 position of the inositol ring. Surprisingly, the type II enzyme, which is abundant in some tissues, phosphorylates PtdIns-5-P at the D-4 position, and thus should be considered as a 4-OH kinase, or PIP(4)K. The earlier error in characterizing the activity of the type II enzyme is due to the presence of contaminating PtdIns-5-P in commercial preparations of PtdIns-4-P. Although PtdIns-5-P was previously thought not to exist in vivo, we find evidence for the presence of this lipid in mammalian fibroblasts, establishing a new pathway for PtdIns-4,5-P2 synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Type II PIPK phosphorylates PtdIns-5-P.
Figure 2: PtdIns-5-P is the preferred substrate for the type II PIPK.
Figure 3: PtdIns-5-P is found in vivo.


  1. 1

    Loijens, J. C., Boronenkov, I. V., Parker, G. J. & Anderson, R. A. The phosphatidylinositol 4-phosphate 5-kinase family. Adv. Enz. Reg. 36, 115–140 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Damen, J. E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA 93, 1689–1693 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Meyers, R. & Cantley, L. C. Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J. Biol. Chem. 272, 4385–4390 (1997).

    Article  Google Scholar 

  4. 4

    Whiteford, C. C., Brearley, C. A. & Ulug, E. T. Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem. J. 323, 597–601 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Ling, L. E., Schulz, J. T. & Cantley, L. C. Characterization and purification of membrane-associated phosphatidylinositol-4-phosphate kinase from human red blood cells. J. Biol. Chem. 264, 5080–5088 (1989).

    CAS  PubMed  Google Scholar 

  6. 6

    Bazenet, C. E., Ruano, A. R., Brockman, J. L. & Anderson, R. A. The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. J. Biol. Chem. 265, 18012–18022 (1990).

    CAS  PubMed  Google Scholar 

  7. 7

    Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167–175 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Carpender, C. L. & Cantley, L. C. Phosphoinositide kinases. Biochemistry 29, 11147–11156 (1990).

    Article  Google Scholar 

  9. 9

    Boronenkov, I. V. & Anderson, R. A. The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J. Biol. Chem. 270, 2881–2884 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Divecha, N., Truong, O., Hsuan, J. J., Hinchcliffe, K. A. & Irvine, R. F. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem. J. 309, 715–719 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Hinchliffe, K. A., Irvine, R. F. & Divecha, N. Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdInsP2(4,5) levels in human platelets are controlled by translocation of PtdIns 4-P 5-kinase C to the cytoskeleton. EMBO J. 15, 6516–6524 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Castellino, A. M., Parker, G. J., Boronenkov, I. V., Anderson, R. A. & Chao, M. V. Anovel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 272, 5861–5870 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Zhang, X. et al. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272, 17756–17761 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Yamamoto, K., Graziani, A., Carpenter, C., Cantley, L. C. & Lapetina, E. G. Anovel pathway for the formation of phosphatidylinositol 3,4-bisphosphate. Phosphorylation of phosphatidylinositol 3-monophosphate by phosphatidylinositol-3-monophosphate 4-kinase. J. Biol. Chem. 265, 22086–22089 (1990).

    CAS  PubMed  Google Scholar 

  15. 15

    Yamamoto, K. & Lapetina, E. G. Protein kinase C-mediated formation of phosphatidylinositol 3,4-bisphosphate in human platelets. Biochem. Biophys. Res. Commun. 168, 466–472 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Graziani, A., Ling, L. E., Endemann, G., Carpenter, C. L. & Cantley, L. C. Purification and characterization of human erythrocyte phosphatidylinositol 4-kinase. Phosphatidylinositol 4-kinase and phosphatidylinositol 3-monophosphate 4-kinase are distinct enzymes. Biochem. J. 284, 39–45 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Ishihara, H. et al. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 271, 23611–23614 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Serunian, L. A., Auger, K. R. & Cantley, L. C. Identiffication and quantiffication of polyphosphoinositides produced in response to platelet-derived growth factor stimulation. Meth. Enzymol. 198, 78–87 (1991).

    CAS  Article  Google Scholar 

Download references


We thank G. Preswich for synthetic PtdIns-5-P, K. Hinchliffe for recombinant type II PIPK, H. Ishihara for type I PIPK cDNA, K. Ravinchandran for the GST-SHIP expression vector, R. Meyers for recombinant PI-4Kβ, A. Couvillon for preparing recombinant type I PIPK and recombinant PI-3K, and D. Fruman and C. Carpenter for critically reading this manuscript, L.E.R. is supported by The Medical Foundation–Charles King Trust. This research was supported by the NIH.

Author information



Corresponding author

Correspondence to Lucia E. Rameh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rameh, L., Tolias, K., Duckworth, B. et al. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing