Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate

Abstract

Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two related subfamilies (type I and type II PtdInsP-5-OH kinases, or PIP(5)Ks) based on their enzymatic properties and sequence similarities1. Here we have reinvestigated the substrate specificities of these enzymes. As expected, the type I enzyme phosphorylates PtdIns-4-P at the D-5 position of the inositol ring. Surprisingly, the type II enzyme, which is abundant in some tissues, phosphorylates PtdIns-5-P at the D-4 position, and thus should be considered as a 4-OH kinase, or PIP(4)K. The earlier error in characterizing the activity of the type II enzyme is due to the presence of contaminating PtdIns-5-P in commercial preparations of PtdIns-4-P. Although PtdIns-5-P was previously thought not to exist in vivo, we find evidence for the presence of this lipid in mammalian fibroblasts, establishing a new pathway for PtdIns-4,5-P2 synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type II PIPK phosphorylates PtdIns-5-P.
Figure 2: PtdIns-5-P is the preferred substrate for the type II PIPK.
Figure 3: PtdIns-5-P is found in vivo.

Similar content being viewed by others

References

  1. Loijens, J. C., Boronenkov, I. V., Parker, G. J. & Anderson, R. A. The phosphatidylinositol 4-phosphate 5-kinase family. Adv. Enz. Reg. 36, 115–140 (1996).

    Article  CAS  Google Scholar 

  2. Damen, J. E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA 93, 1689–1693 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Meyers, R. & Cantley, L. C. Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J. Biol. Chem. 272, 4385–4390 (1997).

    Article  Google Scholar 

  4. Whiteford, C. C., Brearley, C. A. & Ulug, E. T. Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem. J. 323, 597–601 (1997).

    Article  CAS  Google Scholar 

  5. Ling, L. E., Schulz, J. T. & Cantley, L. C. Characterization and purification of membrane-associated phosphatidylinositol-4-phosphate kinase from human red blood cells. J. Biol. Chem. 264, 5080–5088 (1989).

    CAS  PubMed  Google Scholar 

  6. Bazenet, C. E., Ruano, A. R., Brockman, J. L. & Anderson, R. A. The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. J. Biol. Chem. 265, 18012–18022 (1990).

    CAS  PubMed  Google Scholar 

  7. Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167–175 (1989).

    Article  CAS  Google Scholar 

  8. Carpender, C. L. & Cantley, L. C. Phosphoinositide kinases. Biochemistry 29, 11147–11156 (1990).

    Article  Google Scholar 

  9. Boronenkov, I. V. & Anderson, R. A. The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J. Biol. Chem. 270, 2881–2884 (1995).

    Article  CAS  Google Scholar 

  10. Divecha, N., Truong, O., Hsuan, J. J., Hinchcliffe, K. A. & Irvine, R. F. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem. J. 309, 715–719 (1995).

    Article  CAS  Google Scholar 

  11. Hinchliffe, K. A., Irvine, R. F. & Divecha, N. Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdInsP2(4,5) levels in human platelets are controlled by translocation of PtdIns 4-P 5-kinase C to the cytoskeleton. EMBO J. 15, 6516–6524 (1996).

    Article  CAS  Google Scholar 

  12. Castellino, A. M., Parker, G. J., Boronenkov, I. V., Anderson, R. A. & Chao, M. V. Anovel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 272, 5861–5870 (1997).

    Article  CAS  Google Scholar 

  13. Zhang, X. et al. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272, 17756–17761 (1997).

    Article  CAS  Google Scholar 

  14. Yamamoto, K., Graziani, A., Carpenter, C., Cantley, L. C. & Lapetina, E. G. Anovel pathway for the formation of phosphatidylinositol 3,4-bisphosphate. Phosphorylation of phosphatidylinositol 3-monophosphate by phosphatidylinositol-3-monophosphate 4-kinase. J. Biol. Chem. 265, 22086–22089 (1990).

    CAS  PubMed  Google Scholar 

  15. Yamamoto, K. & Lapetina, E. G. Protein kinase C-mediated formation of phosphatidylinositol 3,4-bisphosphate in human platelets. Biochem. Biophys. Res. Commun. 168, 466–472 (1990).

    Article  CAS  Google Scholar 

  16. Graziani, A., Ling, L. E., Endemann, G., Carpenter, C. L. & Cantley, L. C. Purification and characterization of human erythrocyte phosphatidylinositol 4-kinase. Phosphatidylinositol 4-kinase and phosphatidylinositol 3-monophosphate 4-kinase are distinct enzymes. Biochem. J. 284, 39–45 (1992).

    Article  CAS  Google Scholar 

  17. Ishihara, H. et al. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 271, 23611–23614 (1996).

    Article  CAS  Google Scholar 

  18. Serunian, L. A., Auger, K. R. & Cantley, L. C. Identiffication and quantiffication of polyphosphoinositides produced in response to platelet-derived growth factor stimulation. Meth. Enzymol. 198, 78–87 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Preswich for synthetic PtdIns-5-P, K. Hinchliffe for recombinant type II PIPK, H. Ishihara for type I PIPK cDNA, K. Ravinchandran for the GST-SHIP expression vector, R. Meyers for recombinant PI-4Kβ, A. Couvillon for preparing recombinant type I PIPK and recombinant PI-3K, and D. Fruman and C. Carpenter for critically reading this manuscript, L.E.R. is supported by The Medical Foundation–Charles King Trust. This research was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia E. Rameh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rameh, L., Tolias, K., Duckworth, B. et al. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997). https://doi.org/10.1038/36621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing