Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels

Abstract

VOLTAGE-GATED Ca2+ channels link changes in membrane potential to the delivery of Ca2+, a key second messenger for many cellular responses1. Ca2+ channels show selectivity for Ca2+ over more plentiful ions such as Na+ or K+ by virtue of their high-affinity binding of Ca2+ within the pore2& ndash;6. It has been suggested that this binding involves four conserved glutamate residues7& ndash;10 in equivalent positions in the putative pore-lining regions of repeats I& ndash;IV in the Ca2+ channel & alpha;1 subunit. We have carried out a systematic series of single amino-acid substitutions in each of these positions and find that all four glutamates participate in high-affinity binding of Ca2+ or Cdd2+. Each glutamate carboxylate makes a distinct contribution to ion binding, with the carboxylate in repeat III having the strongest effect. Some single glutamate-to-lysine mutations completely abolish micromolar Ca2+ block, indicating that the pore does not possess any high-affinity binding site that acts independently of the four glutamate residues. The prevailing model of Ca2+permeation2,3 must thus be modified to allow binding of two Ca2+ ions in close proximity11,12, within the sphere of influence of the four glutamates. The functional inequality of the glutamates may be advantageous in allowing simultaneous interactions with multiple Ca2+ ions moving single-file within the pore. Competition among Ca2+ ions for individual glutamates11,12, together with repulsive ion-ion electrostatic interaction2,3, may help achieve rapid flux rates through the channel2& ndash;5.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sutherland, Massachusetts, 1992).

    Google Scholar 

  2. 2

    Almers, W. & McCleskey, E. W. J. Physiol., Lond. 353, 585–608 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Hess, P. & Tsien, R. W. Nature 309, 453–456 (1984).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hess, P., Lansman, J. B. & Tsien, R. W. J. gen. Physiol. 88, 293–319 (1986).

    CAS  Article  Google Scholar 

  5. 5

    Lansman, J. B., Hess, P. & Tsien, R. W. J. gen. Physiol. 88, 321–347 (1986).

    CAS  Article  Google Scholar 

  6. 6

    Rosenberg, R. L. & Chen, X.-H. J. gen. Physiol. 97, 1207–1225 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Miller, C. Curr. Biol. 2, 573–575 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Tomaselli, G. F., Backx, P. H. & Marban, E. Circulation Res. 72, 491–496 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. Nature 356, 441–443 (1992).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kim, M.-K., Morii, T., Sun, L.-X., Imoto, K. & Mori, Y. FEBS Lett. 318, 145–148 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Kuo, C.-C. & Hess, P. J. Physiol., Lond. 466, 629–655 (1993).

    CAS  PubMed  Google Scholar 

  12. 12

    Armstrong, C. M. & Neyton, J. Ann. N.Y. Acad. Sci. 635, 18–25 (1992).

    ADS  Article  Google Scholar 

  13. 13

    Mikami, A. et al. Nature 340, 230–233 (1989).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kostyuk, P. G., Mironov, S. L. & Shuba, Y. J. Membrane Biol. 76, 83–93 (1983).

    Article  Google Scholar 

  15. 15

    Fukushima, Y. & Hagiwara, S. J. Physiol., Lond. 358, 255–284 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Heginbotham, L. & MacKinnon, R. Neuron 8, 483–491 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Chow, R. H. J. gen. Physiol. 98, 483–491 (1992).

    Google Scholar 

  18. 18

    Fraústo da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Clarendon, Oxford, 1991).

    Google Scholar 

  19. 19

    Zheng, W., Rampe, D. & Triggle, D. J. Molec. Pharmacol. 40, 734–741 (1991).

    CAS  Google Scholar 

  20. 20

    Tang, S. et al. J. biol. Chem. 268, 13026–13029 (1993).

    CAS  PubMed  Google Scholar 

  21. 21

    Yool, A. J. & Schwarz, T. L. Nature 349, 700–704 (1991).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hartmann, H. A. et al. Science 251, 942–944 (1991).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Nature 339, 476–478 (1989).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kretsinger, R. H. Crit. Rev. Biochem. 8, 119–174 (1980).

    CAS  Article  Google Scholar 

  26. 26

    Revah, F. et al. Nature 353, 846–849 (1991).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Ellis, S. B. et al. Science 241, 1661–1664 (1988).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hullin, R. et al. EMBO. J. 11, 885–890 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Sather, et al. Neuron 11, 291–303 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Meyer, T., Wensel, T. & Stryer, L. Biochemistry 29, 32–37 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Elllnor, P., Sather, W. et al. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993). https://doi.org/10.1038/366158a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.