Letter | Published:

Episodic multiregional cortical coherence at multiple frequencies during visual task performance

Naturevolume 366pages153156 (1993) | Download Citation

Subjects

Abstract

THE way in which the brain integrates fragmentary neural events at multiple locations to produce unified perceptual experience and behaviour is called the binding problem1,2. Binding has been proposed to involve correlated activity at different cortical sites during perceptuomotor behaviour3–5, particularly by synchronization of narrow-band oscillations in the & gamma;-frequency range (30& ndash;80 Hz)6,7. In the rabbit olfactory system, inhalation induces increased & gamma;-cor-relation between sites in olfactory bulb and cortex8. In the cat visual system, coherent visual stimuli increase & gamma;-correlation between sites in both the same and different visual cortical areas9–12. In monkeys, some groups have found that & gamma;-oscillations transiently synchronize within striate cortex13, superior temporal sulcus14 and somatosensorimotor cortex15,16. Others have reported that visual stimuli produce increased broad-band power, but not & gamma;-oscillations, in several visual cortical areas17,18. But the absence of narrow-band oscillations in itself does not disprove interregional synchronization, which may be a broad-band phenomenon. We now describe episodes of increased broad-band coherence among local field potentials from sensory, motor and higher-order cortical sites of macaque monkeys performing a visual discrimination task. Widely distributed sites become coherent without involving other intervening sites. Spatially selective multiregional cortical binding, in the form of broad-band synchronization, may thus play a role in primate perceptuomotor behaviour.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Damasio, A. R. Neural Comput. 1, 123–132 (1989).

  2. 2

    Singer, W. A. Rev. Physiol. 55, 349–374 (1993).

  3. 3

    von der Malsburg, C. & Schneider, W. Biol. Cybern. 54, 29–40 (1986).

  4. 4

    Abeles, M. Local Cortical Circuits (Springer, Berlin, 1982).

  5. 5

    Engel, A. K. et al. Trends Neurosci. 15, 218–226 (1992).

  6. 6

    Bressler, S. L. Trends Neurosci. 13, 161–162 (1990).

  7. 7

    Crick, F. & Koch, C. Semin. Neurosci. 2, 263–275 (1990).

  8. 8

    Bressler, S. L. Brain Res. 409, 285–293 (1987).

  9. 9

    Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

  10. 10

    Engel, A. K., Konig, P., Kreiter, A. K. & Singer, W. Science 252, 1177–1179 (1991).

  11. 11

    Engel, A. K., Kreiter, A. K., Konig, P. & Singer, W. Proc. natn. Acad. Sci. U.S.A. 88, 6048–6052 (1991).

  12. 12

    Eckhorn, R. et al. Biol. Cybern. 60, 121–130 (1988).

  13. 13

    Freeman, W. J. & van Dijk, B. W. Brain Res. 422, 267–276 (1987).

  14. 14

    Kreiter, A. K. & Singer, W. Eur. J. Neurosci. 4, 369–375 (1992).

  15. 15

    Murthy, V. N. & Fetz, E. E. Proc. natn. Acad. Sci. U.S.A. 89, 5670–5674 (1992).

  16. 16

    Sanes, J. N. & Donoghue, J. P. Proc. natn. Acad. Sci. U.S.A. 90, 4470–4474 (1993).

  17. 17

    Young, M. P., Tanaka, K. & Yamane, S. J. Neurophys. 67, 1464–1474 (1992).

  18. 18

    Tovee, M. J. & Rolls, E. T. Neuroreport 3, 369–372 (1992).

  19. 19

    Glaser, E. M. & Ruchkin, D. S. Principles of Neurobiological Signal Analysis 168–176 (Academic, New York, 1976).

  20. 20

    Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Vis. Neurosci. 8, 337–347 (1992).

  21. 21

    Pfurtscheller, G. & Neuper, C. Neuroreport 3, 1057–1060 (1992).

  22. 22

    Gevins, A. S. & Bressler, S. L. in Functional Brain Imaging (eds Pfurtscheller, G. & Lopes da Silva, F. H.) 99–116 (Hans Huber, Bern, 1988).

  23. 23

    Gevins, A. S. et al. Science 235, 580–585 (1987).

  24. 24

    Livanov, M. N. Spatial Organization of Cerebral Processes (Wiley, New York, 1977).

  25. 25

    Sheer, D. E. in Molecular Mechanisms in Memory and Learning (ed. Ungar, G.) 177–211 (Plenum, New York, 1970).

  26. 26

    Bressler, S. L. & Nakamura, R. in Computation and Neural Systems (eds Eeckman, F. & Bower, J. M.) 515–522 (Kluwer, Norwell, Massachusetts, 1993).

Download references

Author information

Affiliations

  1. Center for Complex Systems, Florida Atlantic University, Boca Raton, Florida, 33431, USA

    • Steven L. Bressler
  2. NIMH Neuroscience Center, St Elizabeths, Washington, DC 20032, USA

    • Richard Coppola
  3. Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland, 20892, USA

    • Richard Nakamura

Authors

  1. Search for Steven L. Bressler in:

  2. Search for Richard Coppola in:

  3. Search for Richard Nakamura in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/366153a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.