Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of a lowered water table on nitrous oxide fluxes from northern peatlands

Abstract

NORTHERN peatlands contain 20–30% of the total organic nitrogen and carbon in the world's soils1,2, and thus they apparently have the potential to exert a significant influence on the global atmospheric budget of the greenhouse gases carbon dioxide, methane and nitrous oxide (N2O). In the drier, warmer summer conditions predicted at high latitudes by some climate models3,4 as a result of greenhouse-gas forcing, northern peatlands would become drier, increasing the rate of mineralization of organic matter1,5 and of the microbial processes that produce N2O. These regions might therefore be expected to exert a strong feedback on climate. But whereas methane emissions have been well studied6,7, little is known about the effect on N2O fluxes of changes in the level of peatland water tables. Here we present a comparison of present-day N2O fluxes from virgin peatlands in Finland with those from sites in the same regions that were drained by ditching 30 and 50 years ago. The lowered water table had no effect on N2O emissions from nutrient-poor peat but enhanced those from nutrient-rich peat. We estimate that equivalent drying caused by climate change would increase the total emissions of N2O from northern peatlands by 0.03–0.1 teragrams of nitrogen per year, which is just 0.3–1% of the present global annual emissions. Thus northern peatlands are unlikely to exert a significant climate feedback from N2O emissions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Gorham, E. Ecol. Applic. 1(2), 182–195 (1991).

    Article  Google Scholar 

  2. Sjörs, H. Int. J. Ecol. Envir. Sci. 7, 11–14 (1981).

    Google Scholar 

  3. Manabe, S. & Wetherald, R. T. Science 232, 626–628 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Mitchell, J. F. B. Rev. Geophys. 27, 115–139 (1989).

    Article  ADS  Google Scholar 

  5. Oechel, W. C. et al. Nature 361, 520–523 (1993).

    Article  ADS  Google Scholar 

  6. Harris, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B. & Flebbe, P. A. Nature 315, 652–654 (1985).

    Article  ADS  Google Scholar 

  7. Tyler, S. C. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 7–38 (Am. Soc. for Microbiol, Washington DC, 1991).

    Google Scholar 

  8. Laine, J. & Vanha-Majamaa, I. Ann. Bot. Fenn. 29, 213–233 (1992).

    Google Scholar 

  9. Hemond, H. F. Ecology 64, 99–109 (1983).

    Article  Google Scholar 

  10. Rosswall, T. & Granhall, U. Ecol. Bull. (Stockholm) 30, 209–234 (1980).

    CAS  Google Scholar 

  11. Williams, B. L. & Wheatley, R. E. Biol. Fertil. Soils 6, 141–147 (1988).

    Article  Google Scholar 

  12. Rangeley, A. & Knowles, R. Soil Biol. Biochem. 20, 385–391 (1988).

    Article  CAS  Google Scholar 

  13. Koerselman, W., De Caluwe, H. & Kieskamp, W. M. Biogeochemistry 8, 153–165 (1989).

    Article  CAS  Google Scholar 

  14. Amador, J. A. & Jones, R. D. Soil Biol. Biochem. 25, 793–801 (1993).

    Article  CAS  Google Scholar 

  15. Davidson, E. A. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 219–235 (Am. Soc. for Microbiol., Washington DC, 1991).

    Google Scholar 

  16. Matson, P. A., Gower, S. T., Volkman C., Billow, C. & Grier, C. C. Biogeochemistry 18, 101–117 (1992).

    Article  CAS  Google Scholar 

  17. Goodroad, L. L., Keeney, D. R. J. envir. Qual. 13, 448–452 (1984).

    Article  CAS  Google Scholar 

  18. Solomon, A. M. Oecologia 68, 567–579 (1986).

    Article  ADS  Google Scholar 

  19. Intergovernmental Panel on Climate Change Climate Change—the IPCC Scientific Assesment. (Cambridge Univ. Press, 1990).

  20. Roulet, N., Moore, T., Bubier, J. & Lafleur, P. Tellus 44B, 100–105 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Moore, T. R & Knowles, R. Can. J. Soil Sci. 67, 77–81 (1987).

    Article  CAS  Google Scholar 

  22. Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Suo 43, (4–5), 237–240 (1992).

    Google Scholar 

  23. Silvola, J., Välijoki, J. & Aaltonen, H. Acta for. fenn. 191, 1–32 (1985).

    Google Scholar 

  24. Ruuhijärvi, R. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 47–67 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  25. Keltikangas, M., Laine, J., Puttonen, P. & Seppälä K. Acta for. fenn. 193, 1–94 (1986).

    Google Scholar 

  26. Botch, M. S. & Masing, V. V. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 95–152 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  27. Hofstetter, R. H. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 201–244 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  28. Zoltai, S. C. & Pollet, F. C. in Ecosystems of the World 48 Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 245–268 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  29. Crill, P. M. et al. Glob Biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martikainen, P., Nykänen, H., Crill, P. et al. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993). https://doi.org/10.1038/366051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing