Letter | Published:

Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films

Naturevolume 366pages4850 (1993) | Download Citation

Subjects

Abstract

TWO-DIMENSIONAL assemblies of membrane proteins (see ref. 1, for example) such as bacteriorhodopsin are of current interest because of their potential application in technological areas as diverse as molecular electronics and optical switching2, molecular sieves3,4 and the lithographic fabrication of nanometre-scale patterns5,6. Here we report that bacteriorhodopsin7–9 can retain its folded native structure to temperatures as high as 140 °C when incorporated in multilayer structures of self-assembled, ordered films. Synchrotron X-ray scattering reveals that, under hydrated conditions, the two-dimensional lattice in multilayer films exhibits a reversible solid–liquid transition at about 69 °C, followed by irreversible denaturing of the bacteriorhodopsin at about 90 °C. But in dry films the melting transition and denaturation are suppressed up to 140 °C. These results suggest that it may be feasible to use multilayer assemblies of functional proteins and enzymes10,11 in high-temperature applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Electron Microscopy at Molecular Dimensions: State of the Art and Strategies for the Future (eds Baumeister, W. & Vogell, W.) (Springer, Berlin and New York, 1980).

  2. 2

    Birge, R. R. Rev. phys. Chem. 41, 683–733 (1990).

  3. 3

    Sleytr, U. B. & Sara, M. Appl. Microbiol. Biotechn. 25, 83–90 (1986).

  4. 4

    Baumeister, W. & Lembcke, G. J. Bioenerg. Biomembr. 24, 567–575 (1992).

  5. 5

    Douglas, K., Clark, N. A. & Rothschild, K. J. Appl. Phys. Lett. 56, 692–694 (1990).

  6. 6

    Douglas, K., Devaud, G. & Clark, N. A. Science 257, 642–644 (1992).

  7. 7

    Oesterhelt, D. & Stoeckenius, W. Nature New Biol. 233, 149–152 (1971).

  8. 8

    Oesterhelt, D. & Stoeckenius, W. Proc natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

  9. 9

    Blaurock, A. E. & Stoeckenius, D. Nature New Biol. 233, 152–155 (1971).

  10. 10

    Uzgiris, E. E. & Kornberg, R. D. Nature 301, 125–129 (1983).

  11. 11

    Blankenburg, R., Meller, P., Ringsdorf, H. & Salesse, C. Biochemistry 28, 8214–8221 (1989).

  12. 12

    Brock, T. D. & Madigan, T. in Biology of Microorganisms 6th edn (Prentice Hall, New Jersey, 1991).

  13. 13

    Woese, C. R. Sci. Am. 244, 98–122 (1981).

  14. 14

    Henderson, R. & Unwin, P. N. T. Nature 257, 28–32 (1975).

  15. 15

    Unwin, P. N. T. & Henderson, R. J. molec. Biol. 94, 425–440 (1975).

  16. 16

    Braiman, M. S. & Rothschild, K. J. A. Rev. Biophys. biophys. Chem. 17, 541–570 (1988).

  17. 17

    Smith, G. S., Sirota, E. B., Safinya, C. R., Plano, R. J. & Clark, N. A. J. chem. Phys. 92, 4519–4529 (1990).

  18. 18

    Brouillette, C. G., McMichens, R. B., Stern, L. J. & Khorana, H. G. Proteins: Struct. Funct. Genet. 5, 38–46 (1989).

  19. 19

    Kresheck, G. C. et al. J. Photochem. Photobiol. B 7, 289–302 (1990).

  20. 20

    Kahn, T. W., Sturtevant, J., Engelman, D. M. Biochemistry 31, 8829–8839 (1992).

  21. 21

    Fukuda, K. & Kouyama, T. Biochemistry 31, 11740–11747 (1992).

  22. 22

    Sonar, S., Krebs, M. P., Khorana, H. G. & Rothschild, K. Biochemistry 32, 2263–2271 (1993).

  23. 23

    Jackson, M. B. & Sturtevant, J. M. Biochemistry 17, 4470–4474 (1978).

  24. 24

    Hiraki, K., Hamanaka, T., Mitsui, T. & Kito, Y. Biochim. biophys. Acta 647, 18–28 (1981).

  25. 25

    Henderson, R. et al. J. molec. Biol. 213, 899–929 (1990).

  26. 26

    Rothschild, K. J., Braiman, M. S., Mogi, T., Stern, L. J. & Khorana, H. G. FEBS Lett. 250, 448–452 (1989).

  27. 27

    Oesterhelt, D. & Stoeckenius, W. Meth. Enzym. 31, 667–678 (1974).

  28. 28

    Safinya, C. R. et al. Phys. Rev. Lett. 57, 2718–2721 (1986).

  29. 29

    Safinya, C. R., Sirota, E. B., Roux, D. & Smith, G. S. Phys. Rev. Lett. 62, 1134–1137 (1989).

Download references

Author information

Author notes

  1. Cyrus R. Safinya: To whom correspondence should be addressed

Affiliations

  1. Materials and Physics Departments, and the Materials Research, Laboratory, University of California, Santa Barbara, California, 93106, USA

    • Yi Shen
    •  & Cyrus R. Safinya
  2. Exxon Research & Engineering Co., Annandale, New Jersey, 08801, USA

    • Yi Shen
    • , Keng S. Liang
    •  & A. F. Ruppert
  3. Physics and Physiology Departments, Boston University, Boston, Massachusetts, 02215, USA

    • Kenneth J. Rothschild

Authors

  1. Search for Yi Shen in:

  2. Search for Cyrus R. Safinya in:

  3. Search for Keng S. Liang in:

  4. Search for A. F. Ruppert in:

  5. Search for Kenneth J. Rothschild in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/366048a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.