Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films

Abstract

TWO-DIMENSIONAL assemblies of membrane proteins (see ref. 1, for example) such as bacteriorhodopsin are of current interest because of their potential application in technological areas as diverse as molecular electronics and optical switching2, molecular sieves3,4 and the lithographic fabrication of nanometre-scale patterns5,6. Here we report that bacteriorhodopsin7–9 can retain its folded native structure to temperatures as high as 140 °C when incorporated in multilayer structures of self-assembled, ordered films. Synchrotron X-ray scattering reveals that, under hydrated conditions, the two-dimensional lattice in multilayer films exhibits a reversible solid–liquid transition at about 69 °C, followed by irreversible denaturing of the bacteriorhodopsin at about 90 °C. But in dry films the melting transition and denaturation are suppressed up to 140 °C. These results suggest that it may be feasible to use multilayer assemblies of functional proteins and enzymes10,11 in high-temperature applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Electron Microscopy at Molecular Dimensions: State of the Art and Strategies for the Future (eds Baumeister, W. & Vogell, W.) (Springer, Berlin and New York, 1980).

  2. Birge, R. R. Rev. phys. Chem. 41, 683–733 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Sleytr, U. B. & Sara, M. Appl. Microbiol. Biotechn. 25, 83–90 (1986).

    Article  CAS  Google Scholar 

  4. Baumeister, W. & Lembcke, G. J. Bioenerg. Biomembr. 24, 567–575 (1992).

    Article  CAS  Google Scholar 

  5. Douglas, K., Clark, N. A. & Rothschild, K. J. Appl. Phys. Lett. 56, 692–694 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Douglas, K., Devaud, G. & Clark, N. A. Science 257, 642–644 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Oesterhelt, D. & Stoeckenius, W. Nature New Biol. 233, 149–152 (1971).

    Article  CAS  Google Scholar 

  8. Oesterhelt, D. & Stoeckenius, W. Proc natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Blaurock, A. E. & Stoeckenius, D. Nature New Biol. 233, 152–155 (1971).

    Article  CAS  Google Scholar 

  10. Uzgiris, E. E. & Kornberg, R. D. Nature 301, 125–129 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Blankenburg, R., Meller, P., Ringsdorf, H. & Salesse, C. Biochemistry 28, 8214–8221 (1989).

    Article  CAS  Google Scholar 

  12. Brock, T. D. & Madigan, T. in Biology of Microorganisms 6th edn (Prentice Hall, New Jersey, 1991).

    Google Scholar 

  13. Woese, C. R. Sci. Am. 244, 98–122 (1981).

    Article  CAS  Google Scholar 

  14. Henderson, R. & Unwin, P. N. T. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Unwin, P. N. T. & Henderson, R. J. molec. Biol. 94, 425–440 (1975).

    Article  CAS  Google Scholar 

  16. Braiman, M. S. & Rothschild, K. J. A. Rev. Biophys. biophys. Chem. 17, 541–570 (1988).

    Article  CAS  Google Scholar 

  17. Smith, G. S., Sirota, E. B., Safinya, C. R., Plano, R. J. & Clark, N. A. J. chem. Phys. 92, 4519–4529 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Brouillette, C. G., McMichens, R. B., Stern, L. J. & Khorana, H. G. Proteins: Struct. Funct. Genet. 5, 38–46 (1989).

    Article  CAS  Google Scholar 

  19. Kresheck, G. C. et al. J. Photochem. Photobiol. B 7, 289–302 (1990).

    Article  CAS  Google Scholar 

  20. Kahn, T. W., Sturtevant, J., Engelman, D. M. Biochemistry 31, 8829–8839 (1992).

    Article  CAS  Google Scholar 

  21. Fukuda, K. & Kouyama, T. Biochemistry 31, 11740–11747 (1992).

    Article  CAS  Google Scholar 

  22. Sonar, S., Krebs, M. P., Khorana, H. G. & Rothschild, K. Biochemistry 32, 2263–2271 (1993).

    Article  CAS  Google Scholar 

  23. Jackson, M. B. & Sturtevant, J. M. Biochemistry 17, 4470–4474 (1978).

    Article  CAS  Google Scholar 

  24. Hiraki, K., Hamanaka, T., Mitsui, T. & Kito, Y. Biochim. biophys. Acta 647, 18–28 (1981).

    Article  CAS  Google Scholar 

  25. Henderson, R. et al. J. molec. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  26. Rothschild, K. J., Braiman, M. S., Mogi, T., Stern, L. J. & Khorana, H. G. FEBS Lett. 250, 448–452 (1989).

    Article  CAS  Google Scholar 

  27. Oesterhelt, D. & Stoeckenius, W. Meth. Enzym. 31, 667–678 (1974).

    Article  CAS  Google Scholar 

  28. Safinya, C. R. et al. Phys. Rev. Lett. 57, 2718–2721 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Safinya, C. R., Sirota, E. B., Roux, D. & Smith, G. S. Phys. Rev. Lett. 62, 1134–1137 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Safinya, C., Liang, K. et al. Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films. Nature 366, 48–50 (1993). https://doi.org/10.1038/366048a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366048a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing