Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation

Abstract

THE use of fluorescence microscopy for investigating the three-dimensional structure of cells and tissue is of growing importance in cell biology, biophysics and biomedicine. Three-dimensional data are obtained by recording a series of images of the specimen as it is stepped through the focal plane of the microscope1–3. Whether by direct imaging or by confocal scanning4,5, diffraction effects and noise generally limit axial resolution to about 0.5 μm. Here we describe a fluorescence microscope in which axial resolution is increased to better than 0.05 μm by using the principle of standing-wave excitation of fluorescence. Standing waves formed by interference in laser illumination create an excitation field with closely spaced nodes and antinodes, allowing optical sectioning of the specimen at very high resolution. We use this technique to obtain images of actin fibres and filaments in fixed cells, actin single filaments in vitro and myosin II in a living cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fay, F. S., Fujiwara, K., Rees, D. D. & Fogarty, K. E. J. Cell Biol. 96, 783–795 (1983).

    Article  CAS  Google Scholar 

  2. Agard, D. A. Rev. Biophys. Bioengn 13, 191–219 (1984).

    Article  CAS  Google Scholar 

  3. Agard, D. A., Hiraoka, Y., Shaw, P. & Sedat, J. W. Meth. Cell Biol. 30, 353–377 (1989).

    Article  CAS  Google Scholar 

  4. Wilson, T. & Sheppard, C. J. R. Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

    Google Scholar 

  5. Pawley, J. (ed) The Handbook of Biological Confocal Microscopy (IMR, Madison, 1989).

  6. Carter, K. C., et al. Science 259, 1330–1335 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Sheppard, C. J. R. & Choudhury, A. Optica 24, 1051–1073 (1977).

    Article  ADS  Google Scholar 

  8. Brakenhoff, G. J., Blom, P. & Barends, P. J Microsc. 117, 219–232 (1979).

    Article  Google Scholar 

  9. Lanni, F. in Applications of Fluorescence in the Biomedical Sciences (eds Taylor, D. L. et al.) 505–521 (Liss, New York, 1986).

    Google Scholar 

  10. Lanni, F., Taylor, D. L. & Waggoner, A. S. US Patent No. 4,621,911 (1986).

  11. Hell, S. & Stelzer, E. H. K. J. Opt. Soc. Am. A 9, 2159–2166 (1993).

    Article  ADS  Google Scholar 

  12. Born, M. & Wolf, E. Principles of Optics 6th edn 439–441 (Pergamon, New York, 1980).

    Google Scholar 

  13. Giuliano, K. A. & Taylor, D. L. Cell Motil. Cytoskel. 16, 14–21 (1990).

    Article  CAS  Google Scholar 

  14. Fisher, G. W., Conrad, P. A., DeBiasio, R. L. & Taylor, D. L. Cell Motil. Cytoskel. 11, 235–247 (1988)

    Article  CAS  Google Scholar 

  15. Lanni, F., Waggoner, A. S. & Taylor, D. L. J. Cell Biol. 100, 1091–1102 (1985).

    Article  CAS  Google Scholar 

  16. Bereiter-Hahn, J., Fox, C. H. & Thorell, B. J. Cell Biol. 82, 767–779 (1979).

    Article  CAS  Google Scholar 

  17. Ross, K. F. A. & Gordon, R. E. J. Microsc. 128, 7–21 (1981).

    Article  Google Scholar 

  18. DeBiasio, R. L., Wang, L.-L., Fisher, G. W. & Taylor, D. L. J. Cell Biol. 107, 2631–2645 (1988).

    Article  CAS  Google Scholar 

  19. Small, J. V. J. Cell Biol. 91, 695–705 (1981).

    Article  CAS  Google Scholar 

  20. Wang, Y. -L. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  21. Fan, J., Mansfield, S. G., Redmond, T., Gordon-Weeks, P. R. & Raper, J. A. J. Cell Biol. 121, 867–878 (1993).

    Article  CAS  Google Scholar 

  22. Holmes, T. J. J. Opt. Soc. Am. A 5, 666–673 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Carrington, W. A. Soc. Photo-opt. Instrumentation Engng Proc. 1205, 72–83 (1990).

    ADS  Google Scholar 

  24. Podilchuk, C. I. & Mammone, R. J. J. Opt. Soc. Am. A 7, 517–521 (1990).

    Article  ADS  Google Scholar 

  25. Koshy, M., Agard, D. A. & Sedat, J. W. Soc. Photo-opt. Instrumentation Engng Proc. 1205, 64–71 (1990).

    ADS  Google Scholar 

  26. Preza, C., Miller, M. I., Thomas, L. J. Jr., & McNally, J. G. J. Opt. Soc. Am. A 9, 219–228 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kogelnik, H. & Li, T. Proc. Instn Electl Electron. Engrs 54, 1312–1329 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, B., Farkas, D., Taylor, D. et al. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48 (1993). https://doi.org/10.1038/366044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366044a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing