Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The intrinsic luminosity of γ-ray bursts and their host galaxies

Abstract

THE Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory has shown that, although γ-ray bursts are distributed isotropically on the sky, there is an apparent dearth of weak events compared to those expected from a homogeneous distribution of sources1,2. This suggests that the bursts originate either in an extended galactic halo3 (that is, locally) or at cosmological distances4,5. The intensity distribution of the bursts can be used to constrain their source properties and spatial distribution, and here we address this question by considering the BATSE data with those from the Pioneer Venus Orbiter, correcting for the different reponse of the two instruments. We show that the composite intensity distribution can after all be fitted by a simple, homogeneous model of γ-ray burst sources with identical intrinsic luminosities where the faintest BATSE events are at a redshift of z0.80±0.05. We obtain an upper limit of about −18 on the absolute magnitude of the host galaxies by assigning model-derived distances to the brightest extragalactic objects found15 within the error boxes of eight well localized γ-ray bursts. All but the faintest active galaxies are excluded as the source of the bursts. The bursts may instead be associated with normal galaxies, but only if the host-galaxy magnitudes are close to our upper limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meegan, C. A. et al. Nature 335, 143–145 (1992).

    Article  ADS  Google Scholar 

  2. Meegan, C. A. et al. in Gamma-ray Bursts, Proc. of the Huntsville Conference (eds Paciesas, W. & Fishman, G.) 61–69 (Am. Inst. Phys. publ. No. 265, New York, 1992).

    Google Scholar 

  3. Mao, S. & Paczynski, B. Astrophys. J. 389, L13–L16 (1992).

    Article  ADS  Google Scholar 

  4. Paczynski, B. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Paczynski, B. in Gamma-ray Bursts, Proc. of the Huntsville Conference, (eds Paciesas, W & Fishman, G.) 144–148 (Am. Inst. Phys, publ. No. 265, New York, 1992).

    Google Scholar 

  6. Piran, T. Astrophys. J. 389, L45–L48 (1992).

    Article  ADS  Google Scholar 

  7. Wickramasinghe, W. et al. Astrophys. J. (submitted).

  8. Dermer, C. Phys. Rev. Lett. 68, 1799–1802 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Fenimore, E. E. et al. Nature 357, 140–142 (1992).

    Article  ADS  Google Scholar 

  10. Mao, S. & Paczynski, B. Astrophys. J. 388, L45–L48 (1992).

    Article  ADS  Google Scholar 

  11. Fenimore, E. E. et al. in Proc. of the St. Louis Compton Gamma-ray Obs. Conference (eds Friedlander, M., Gehrels, N. & Macomb, D.) 744–748 (Am. Inst. Phys. Publ, No. 280, New York, 1993).

    Google Scholar 

  12. Teegarden, B. et al. in Proc. of the St. Louis Compton Gamma-ray Obs. Conference (eds Friedlander, M., Gehrels, N. & Macomb, D.) 860–863 (Am. Inst. Phys. Publ. No. 280, New York, 1993).

    Google Scholar 

  13. Fenimore, E. E. et al. in Gamma-ray Bursts, Proc. of the Huntsville Conference (eds Paciesas, W. & Fishman, G.) 108–112 (Am. Inst. Phys. Publ. No. 265, New York, 1992).

    Google Scholar 

  14. Lampton, M., Margon, B. & Bowyer, S. Astrophys. J. 208, 177–190 (1976).

    Article  ADS  Google Scholar 

  15. Schaefer, B. E. in Gamma-ray Bursts: Observations, Analyses, and Theories (eds Ho, C., Epstein, R. & Fenimore, E. E.) 107–111 (Cambridge Univ. Press, 1992).

    Google Scholar 

  16. Pedersen, H. et al. Astrophys. J. 270, L43–L47 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Osterbrock, D. E. Rep. Prog. Phys. 54, 579–633 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Schmidt, M. J., Higdon, J. & Heuter, G. Astrophys. J. 329, L85–L88 (1988).

    Article  ADS  Google Scholar 

  19. Boyle, B. J., Shanks, T. & Peterson, B. A. Mon. Not. R. astr. Soc. 235, 935–948 (1988).

    Article  ADS  Google Scholar 

  20. Hawkins, M. R. S. & Veron, P. Mon. Not. R. astr. Soc. 260, 202–208 (1983).

    Article  ADS  Google Scholar 

  21. Epstein, R. I., Fenimore, E. E., Leonard, P. J. T. & Link, B. in Proc. of the Texas/PASCOS Conf. (eds Akenlof, C. W. & Srednicki, M. A.) 685, 565 (New York Acad. Sci.).

  22. Meszaros, P. & Rees, M. J. Astrophys. J. 397, 570–575 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenimore, E., Epstein, R., Ho, C. et al. The intrinsic luminosity of γ-ray bursts and their host galaxies. Nature 366, 40–42 (1993). https://doi.org/10.1038/366040a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366040a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing