Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DNA replication fork can pass RNA polymerase without displacing the nascent transcript

Abstract

Replication proteins encoded by bacteriophage T4 generate DNA replication forks that can pass a molecule of Escherichia coli RNA polymerase moving in the same direction as the fork in vitro. The RNA polymerase ternary transcription complex remains bound to the DNA and retains a transcription bubble after the fork passes. The by-passed ternary complex can resume faithful RNA synthesis, suggesting that the multisubunit RNA polymerase of E. coli has evolved to retain its transcript after DNA replication, allowing partially completed transcripts to be elongated into full-length RNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bremer, H. & Dennis, P. P. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (eds Neidhardt, F. C.) 1527–1542 (Am. Soc. of Microbiology, Washington DC, 1987).

    Google Scholar 

  2. Hirose, S., Hiraga, S. & Okazaki, T. Molec. gen. Genet. 189, 422–431 (1983).

    Article  CAS  Google Scholar 

  3. Johnston, D. E. & McClure, W. R. in RNA Polymerase (eds Losick, R. & Chamberlin, M. J.) 413–428 (Cold Spring Harbor Laboratory Press, New York, 1976).

    Google Scholar 

  4. von Hippel, P. H. et al. A. Rev. Biochem. 53, 389–446 (1984).

    Article  CAS  Google Scholar 

  5. Wang, W., Carey, M. & Gralla, J. D. Science 255, 450–453 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Christensen, A. C. & Young, E. T. in The Bacteriophage T4 (eds Matthews, C. K. et al.) 184–188 (Am. Soc. for Microbiology, Washington DC, 1983).

    Google Scholar 

  7. Kassavetis, G. A. & Geiduschek, E. P. EMBO J. 1, 107–114 (1982).

    Article  CAS  Google Scholar 

  8. Kassavetis, G. A., Zenter, P. G. & Geiduschek, E. P. J. biol. Chem. 261, 14256–14265 (1986).

    CAS  PubMed  Google Scholar 

  9. Kassavetis, G. A. & Geiduschek, E. P. Proc. natn. Acad. Sci. U.S.A. 81, 5101–5105 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Hinkle, D. C., Ring, J. & Chamberlin, M. J. J. molec. Biol. 70, 197–207 (1972).

    Article  CAS  Google Scholar 

  11. Williams, K. P., Kassavetis, G. A. & Geiduschek, E. P. J. biol. Chem. 262, 12365–12371 (1987).

    CAS  PubMed  Google Scholar 

  12. Alberts, B. M. Phil. Trans. R. Soc. B317, 395–420 (1987).

    Article  CAS  Google Scholar 

  13. Alberts, B. M. & Frey, L. Nature 227, 1313–1318 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Morris, C. F., Hamma-Inaba, H., Mace, D., Sinha, N. K. & Alberts, B. M. J. biol. Chem. 254, 6787–6796 (1979).

    CAS  PubMed  Google Scholar 

  15. Morris, C. F., Moran, L. A. & Alberts, B. M. J. biol. Chem. 254, 6796–6802 (1987).

    Google Scholar 

  16. Kassavetis, G. A., Blanco, J. A., Johnson, T. E. & Geiduschek, E. P. J. molec. Biol. 226, 47–58 (1992).

    Article  CAS  Google Scholar 

  17. Rice, G. A., Kane, C. M. & Chamberlin, M. J. Proc. natn. Acad. Sci. U.S.A. 88, 4245–4249 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Surratt, C. K., Milan, S. C. & Chamberlin, M. J. Proc. natn. Acad. Sci. U.S.A. 88, 7983–7987 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Kumar, S. A. & Krakow, J. S. J. biol. Chem. 250, 2879–2884 (1975).

    Google Scholar 

  20. Kumar, S. A. Prog. Biophys. molec. Biol. 38, 165–210 (1981).

    Article  CAS  Google Scholar 

  21. Bean, B., Koren, R. & Mildvan, A. S. Biochemistry 16, 3322–3333 (1977).

    Article  CAS  Google Scholar 

  22. Stein, B. J. & Mildvan, A. S. Biochemistry 17, 2675–2684 (1978).

    Article  CAS  Google Scholar 

  23. Borukhov, S., Sagitov, V. & Goldfarb, A. Cell 72, 459–466 (1993).

    Article  CAS  Google Scholar 

  24. Fisher, R. & Blumenthal, T. J. biol. Chem. 257, 1702–1704 (1982).

    CAS  PubMed  Google Scholar 

  25. Mi, H. & Hartmann, G. R. Eur. J. Biochem. 131, 113–118 (1983).

    Article  CAS  Google Scholar 

  26. von Hippel, P. H. & Yager, Y. D. Science 255, 809–812 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Yager, T. D. & von Hippel, P. H. Biochemistry 30, 1097–1118 (1991).

    Article  CAS  Google Scholar 

  28. Chamberlin, M. J. in RNA Polymerase (eds Losick, R. & Chamberlin, M. J.) 17–67 (Cold Spring Harbor Laboratory Press, New York, 1976).

    Google Scholar 

  29. Joe, J.-H., Burgess, R. R. & Record, M. T. J. molec. Biol. 184, 441–453 (1985).

    Article  Google Scholar 

  30. Bedinger, P., Hochstrasser, M., Jongeneel, V. G. & Alberts, B. M. Cell 34, 115–123 (1987).

    Article  Google Scholar 

  31. Sentenac, A. et al., in Transcription Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 27–54 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  32. Young, R. A. A. Rev. Biochem. 60, 689–715 (1991).

    Article  CAS  Google Scholar 

  33. Shermoen, A. W. & O'Farrell, P. H. Cell 67, 303–310 (1991).

    Article  CAS  Google Scholar 

  34. French, S. Science 258, 1362–1365 (1992).

    Article  ADS  CAS  Google Scholar 

  35. Richardson, J. P. Crit. Rev. Biochem. molec. Biol. 28, 1–30 (1993).

    Article  CAS  Google Scholar 

  36. Nossal, N. G. J. biol. Chem. 255, 2176–2182 (1980).

    CAS  PubMed  Google Scholar 

  37. Cha, T.-A. & Alberts, B. M. J. biol. Chem. 261, 7001–7010 (1986).

    CAS  PubMed  Google Scholar 

  38. Herendeen, D. R., Kassavetis, G. A., Barry, J., Alberts, B. M. & Geiduschek, E. P. Science 245, 952–958 (1989).

    Article  ADS  CAS  Google Scholar 

  39. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  40. Meyer, T. F., Geider, K., Kurz, C. & Schaller, H. Nature 278, 365–367 (1979).

    Article  ADS  CAS  Google Scholar 

  41. Hayatsu, H. & Ukita, T. Biochem. biophys. Res. Commun. 29, 556–561 (1967).

    Article  CAS  Google Scholar 

  42. Gralla, J. D. Proc. natn. Acad. Sci. U.S.A. 82, 3078–3081 (1985).

    Article  ADS  CAS  Google Scholar 

  43. Sasse-Dwight, S. & Gralla, J. D. J. molec. Biol. 202, 107–119 (1988).

    Article  CAS  Google Scholar 

  44. Ide, H., Kow, Y. W. & Wallace, S. S. Nucleic Acids Res. 13, 8035–8052 (1985).

    Article  CAS  Google Scholar 

  45. Dubochet, J., Ducommun, M., Zollinger, M. & Kellenberger, E. Ultrastruct. Res. 35, 147–167 (1971).

    Article  CAS  Google Scholar 

  46. Kleinschemidt, A. K. Meth. Enzym. 12, 361–377 (1968).

    Article  Google Scholar 

  47. Gamper, H. B. & Hearst, J. E. Cell 29, 81–90 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Lie Wong, M., Tinker, R. et al. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366, 33–39 (1993). https://doi.org/10.1038/366033a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366033a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing