Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of contractile vacuole function in vivo by antibodies against myosin-I

Abstract

MYOSIN-I is thought to supply the force for movement of cell membranes relative to actin filaments (reviewed in refs 1, 2), but confirmation of this hypothesis has been difficult because of the presence of multiple isoforms of myosin-I and other unconventional myosins in most cells3. We report here the first evidence that a myosin-I isoform is essential for a specific class of intracellular membrane movements in vivo. In Acanthamoeba, the contractile vacuole is an autonomous structure which fuses with the plasma membrane to control the water content of the cell. Because myosin-IC is the only myosin-I isoform concentrated in the contractile vacuole complex4,5, and a protein antigenically related to myosin-IC is located on or near the Dictyostelium (slime mould) contractile vacuole6, we thought this organelle might provide the best opportunity to demonstrate a relationship between myosin-I and membrane motility. Antibodies that inhibit the activity of Acanthamoeba myosin-IC in vitro interfere with expulsion of excess water by the contractile vacuole in vivo, leading to overfilling of this organelle and cell lysis. Myosin-IC may generate the force required to contract the vacuole and may also be involved in transfer of water to the contractile vacuole during refilling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollard, T. D., Doberstein, S. K. & Zot, H. G. A. Rev. Physiol. 53, 653–681 (1991).

    Article  CAS  Google Scholar 

  2. Hammer, J. A. III Trends Cell Biol. 1, 50–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Cheney, R. E. & Mooseker, M. S. Curr. Opin. Cell Biol. 4, 27–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Baines, I. C. & Korn, E. D. J. Cell Biol. 111, 1895–1904 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Baines, I. C., Brzeska, H. & Korn, E. D. J. Cell Biol. 119, 1193–1203 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Q. & Clarke, M. J. Cell Biol. 118, 347–358 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Maruta, H. & Korn, E. D. J. biol. Chem. 252, 8329–8332 (1977).

    CAS  PubMed  Google Scholar 

  8. Lynch, T. J., Brzeska, H., Miyata, H. & Korn, E. D. J. biol. Chem. 264, 19333–19339 (1989).

    CAS  PubMed  Google Scholar 

  9. Albanesi, J. P. et al. J. biol. Chem. 260, 8649–8652 (1985).

    CAS  PubMed  Google Scholar 

  10. Zot, H. G., Doberstein, S. K. & Pollard, T. D. J. Cell Biol. 116, 367–376 (1991).

    Article  Google Scholar 

  11. Clarke, M. S. F. & McNeil, P. L. J. Cell Sci. 102, 533–541 (1992).

    CAS  PubMed  Google Scholar 

  12. Sinard, J. H. & Pollard, T. D. Cell Motil. Cytoskel. 12, 42–53 (1989).

    Article  CAS  Google Scholar 

  13. Wigg, D., Bovee, E. C. & Jahn, T. L. J. Protozool. 14, 104–108 (1967).

    Article  Google Scholar 

  14. Titus, M. A., Wessels, D., Spudich, J. A. & Soll, D. Molec. Biol. Cell 4, 233–246 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wessels, D., Murray, J., Jung, G., Hammer, J. A. & Soll, D. R. Cell Motil. Cytoskel. 20, 301–315 (1991).

    Article  CAS  Google Scholar 

  16. Jung, G. & Hammer, J. H. III J. Cell Biol. 110, 1955–1964 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Witke, W., Schleicher, M. & Noegel, A. A. Cell 68, 53–62 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Cox, D. J. Cell Biol. 116, 943–955 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. DeLozanne, A. & Spudich, J. A. Science 236, 1086–1091 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Knecht, D. A. & Loomis, W. F. Science 236, 1081–1086 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wessels, D. et al. Devl Biol. 128, 164–177 (1988).

    Article  CAS  Google Scholar 

  22. Furukawa, R., Butz, S., Fleischmann, E. & Fechheimer, M. Protoplasma 169, 18–27 (1992).

    Article  Google Scholar 

  23. Spudich, J. A. & Watt, S. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  24. Pollard, T. D. & Korn, E. D. J. biol. Chem. 248, 4682–4690 (1973).

    CAS  PubMed  Google Scholar 

  25. Albanesi, J. P., Lynch, T. J., Fujisaki, H. & Korn, E. D. J. biol. Chem. 261, 10445–10449 (1986).

    CAS  PubMed  Google Scholar 

  26. Brzeska, H., Lynch, T. J. & Korn, E. D. J. biol. Chem. 265, 3591–3594 (1990).

    CAS  PubMed  Google Scholar 

  27. Lynch, T. J., Brzeska, H., Baines, I. C. & Korn, E. D. Meth. Enzym. 196, 12–23 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doberstein, S., Baines, I., Wiegand, G. et al. Inhibition of contractile vacuole function in vivo by antibodies against myosin-I. Nature 365, 841–843 (1993). https://doi.org/10.1038/365841a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365841a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing