Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Math1 is essential for genesis of cerebellar granule neurons

Abstract

The cerebellum is essential for fine motor control of movement and posture, and its dysfunction disrupts balance and impairs control of speech, limb and eye movements. The developing cerebellum consists mainly of three types of neuronal cells: granule cells in the external germinal layer, Purkinje cells, and neurons of the deep nuclei1. The molecular mechanisms that underlie the specific determination and the differentiation of each of these neuronal subtypes are unknown. Math1 (refs 2, 3), the mouse homologue of the Drosophila gene atonal4, encodes a basic helix–loop–helix transcription factor that is specifically expressed in the precursors of the external germinal layer and their derivatives. Here we report that mice lacking Math1 fail to form granule cells and are born with a cerebellum that is devoid of an external germinal layer. To our knowledge, Math1 is the first gene to be shown to be required in vivo for the genesis of granule cells, and hence the predominant neuronal population in the cerebellum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The developing cerebellum at E16.
Figure 2: Targeted disruption of the Math1 locus and generation of Math1-null mice.
Figure 3: Cerebellar abnormalities in E18.
Figure 4: Absence of the EGL in E14.
Figure 5: Inferior olive nuclei are normal in Math1 null mice.

Similar content being viewed by others

References

  1. Altman, J. & Bayer, S. A. in Development of the Cerebellar System: In Relation to its Evolution, Structure, and Functions (CRC Press, Boca Raton, Florida, (1996)).

    Google Scholar 

  2. Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S. & Kageyama, R. A. Mammalian helix–loop–helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730–8738 (1995).

    Article  CAS  Google Scholar 

  3. Ben-Arie, N. et al. Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggest a conserved role in neurogenesis. Hum. Mol. Genet. 5, 1207–1216 (1996).

    Article  CAS  Google Scholar 

  4. Jarman, A. P., Grau, Y., Jan, L. Y. & Jan, Y. N. atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321 (1993).

    Article  CAS  Google Scholar 

  5. Hatten, M. E. & Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci. 18, 385–408 (1995).

    Article  CAS  Google Scholar 

  6. Hallonet, M. E. & Le Dourain, N. M. Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur. J. Neursci. 5, 1145–1155 (1993).

    Article  CAS  Google Scholar 

  7. Hatten, M. E., Alder, J., Zimmerman, K. & Heintz, N. Genes involved in cerebellar cell specification and differentiation. Curr. Opin. Neurobiol. 7, 40–47 (1997).

    Article  CAS  Google Scholar 

  8. Jarman, A. P., Sun, Y., Jan, L. Y. & Jan, Y. N. Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 2019–2030 (1995).

    CAS  PubMed  Google Scholar 

  9. Yang, X. W., Zhong, R. & Heintz, N. Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49. Development 122, 555–566 (1996).

    CAS  PubMed  Google Scholar 

  10. Debus, E., Weber, K. & Osborn, M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 25, 193–203 (1983).

    Article  CAS  Google Scholar 

  11. Tohyama, T. et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66, 303–313 (1992).

    CAS  PubMed  Google Scholar 

  12. Smeyne, R. J. & Goldowitz, D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J. Neurosci. 9, 1608–1620 (1989).

    Article  CAS  Google Scholar 

  13. Wood, K. A., Dipasquale, B. & Youle, R. J. In situ labeling of granule cells for apoptosis associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11, 621–632 (1993).

    Article  CAS  Google Scholar 

  14. His, W. Die Entwicklung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. Abhandlung der königlicher sächsischen Gesellschaft der Wissenschaften, mathematische-physikalische Klasse 29, 1–74 (1891).

    Google Scholar 

  15. Heintz, N., Norman, D., Gao, W.-O. & Hatten, M. in genome Maps and Neurological Disorders (eds Davies, K. E. &Tilghman, S. M.) 19–45 (Cold Spring Harbor Laboratory Press, New York, (1993)).

    Google Scholar 

  16. Mouse Genome Database 3.1 (Mouse Genome Informatics, The Jackson Laboratory, Bar Horbor, Maine(http://www.informatics.jax.org/), (1996)).

  17. Frontiers in Bioscience 2.6 (http://www.bioscience.org/knockout/knochome.html) (1997).

  18. Goffinet, A. M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. Rev. 7, 261–296 (1984).

    Article  Google Scholar 

  19. Rezai, Z. & Yoon, C. H. Abnormal rte of granule cell migration in the cerebellum of weaver mutant mice. Dev. Biol. 29, 17–26 (1972).

    Article  CAS  Google Scholar 

  20. Joyner, A. L. Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet. 12, 15–20 (1996).

    Article  CAS  Google Scholar 

  21. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  22. Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 845–850 (1990).

    Article  ADS  Google Scholar 

  23. Thomas, K. R., Musci, T. S., Neumann, P. E. & Capecchi, M. R. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67, 969–976 (1991).

    Article  CAS  Google Scholar 

  24. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 (1992).

    Article  CAS  Google Scholar 

  25. Millen, K. J., Wurst, W., Herrup, K. & Joyner, A. L. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706 (1994).

    CAS  PubMed  Google Scholar 

  26. Wurst, W., Auerbach, A. B. & Joyner, A. L. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075 (1994).

    CAS  PubMed  Google Scholar 

  27. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  Google Scholar 

  28. Albrecht, U., Eichele, G., Helms, J. & Lu, H. in Visualization of Gene Expression Patterns byin situHybridization (ed. Daston, G. P.) 23–48 (CRC Press, Boca Raton, Florida, (1997)).

    Google Scholar 

  29. Schaeren-Wiemers, N. & Gerfin-Moser, A. Asingle protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. A. Antalffy for technical assistance; P. R. Cox and J. Dong for their help; and R. R. Behringer, K. A. Mahon and B. Hassan for critical reading of the manuscript. H.Y.Z. is an investigator and H.J.B. is an associate investigator of the Howard Hughes Medical Institute. This work was supported by grants from the NIH/NINDS and by the Baylor Mental Retardation Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Y. Zoghbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Arie, N., Bellen, H., Armstrong, D. et al. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997). https://doi.org/10.1038/36579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36579

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing