Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visual pattern recognition in Drosophila involves retinotopic matching


HONEYBEES remember the shapes of flowers and are guided by visual landmarks on their foraging trips1,2. How insects recognize visual patterns is poorly understood. Experiments suggest that they try to match retinotopically the incoming visual pattern with a previously stored memory image2–7. But bees can be conditioned to individual pattern parameters such as orientation of contours, colour or size2,8–11. These and other results are difficult to reconcile with simple template matching. In such investigations, freely moving animals are observed; their behaviour and visual input, therefore, are not well known. Mostly, processing strategies are inferred from stimulus design. We have studied visual pattern recognition with tethered flies (Drosophila melanogaster) in a flight simulator and report here that flies store visual images at, or together with, fixed retinal positions and can retrieve them from there only5. Position invariance, an acknowledged property of human pattern recognition, may not exist as a primary mechanism in insects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Tinbergen, N. Z. vergl. Physiol. 15, 305–334 (1932).

    Google Scholar 

  2. Wehner, R. in Handbook of Sensory Physiology Vol. VII/6C (ed. Autrum, H. J.) (Springer, Berlin, 1981).

    Google Scholar 

  3. Wehner, R. J. comp. Physiol. 77, 256–277 (1972).

    Article  Google Scholar 

  4. Cartwright, B. A. & Collett, T. S. Nature 295, 560–564 (1982).

    Article  ADS  Google Scholar 

  5. Cartwright, B. A. & Collett, T. S. J. comp. Physiol. A151, 521–543 (1983).

    Article  Google Scholar 

  6. Gould, J. L. Science 227, 1492–1494 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Collett, T. S. Phil. Trans. R. Soc. B337, 295–303 (1992).

    Article  Google Scholar 

  8. Ronacher, B. Biol. Cybern. 32, 63–75 (1979).

    Article  Google Scholar 

  9. van Hateren, J. H., Srinivasan, M. V. & Wait, P. B. J. comp. Physiol. A167, 649–654 (1990).

    Article  Google Scholar 

  10. Horridge, G. A., Zhang, S. W. & Lehrer, M. Phil. Trans. R. Soc. B337, 49–57 (1992).

    Article  Google Scholar 

  11. Zhang, S. W., Srinivasan, M. V. & Horridge, G. A. Proc. R. Soc. B248, 55–61 (1992).

    Article  ADS  Google Scholar 

  12. Heisenberg, M. & Wolf, R. in Visual Motion and its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallmann, J.) 265–283 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  13. Wolf, R. & Heisenberg, M. J. comp. Physiol. A169, 699–705 (1991).

    Article  CAS  Google Scholar 

  14. Götz, K. G. Kybernetik 2, 215–221 (1965).

    Article  Google Scholar 

  15. Buchner, E. Biol. Cybern. 24, 85–101 (1976).

    Article  Google Scholar 

  16. Cronly-Dillon, J. R., Sutherland, N. S. & Wolfe, J. J. exp. Neurol. 15, 455–462 (1966).

    Article  Google Scholar 

  17. Myers, R. E. J. comp. Physiol. Psychol. 48, 470–473 (1955).

    Article  CAS  Google Scholar 

  18. Ramachandran, V. S. Nature 262, 382–384 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Karni, A. & Sagi, D. Proc. natn. Acad. Sci. U.S.A. 88, 4966–4970 (1991).

    Article  ADS  CAS  Google Scholar 

  20. O'Carroll, D. Nature 362, 541–543 (1993).

    Article  ADS  Google Scholar 

  21. Srinivasan, M. V., Zhang, S. W. & Rolfe, B. Nature 362, 539–540 (1993).

    Article  ADS  Google Scholar 

  22. Heisenberg, M. & Wolf, R. J. comp. Physiol. A163, 373–388 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dill, M., Wolf, R. & Heisenberg, M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature 365, 751–753 (1993).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing