Abstract
MOST materials shrink laterally and become less dense when stretched. Materials that both expand laterally (that is, have negative Poisson's ratio) and densify when stretched are of interest both from the fundamental and the practical points of view1–5. A few monocrystalline phases with negative Poisson's ratio are known3,4, but these do not densify when stretched. Here we present molecular-mechanics calculations for some hypothetical phases of carbon which exhibit both kinds of behaviour. The properties derive from the presence of bonds that act as hinges in extended helical chains. Other unusual properties of these phases include negative thermal expansion, dopant-controlled porosity and low-temperature polymorphism. Such structures can be envisaged for polyacetylene, polydiacetylene, polyphenylene and (BN)x phases, as well as for variants of some known, structurally related inorganic phases.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Evans, K. E., Nkansa, M. A., Hutchinson, I. J. & Rogers, S. C. Nature 353, 124 (1991).
Gibson, L. J., Ashby, M. F., Schajer, G. S. & Robertson, C. I. Proc. R. Soc. A382, 25–42 (1982).
Lakes, R. S. Adv. Mater. 5, 293–296 (1993); J. Mater. Sci. 26, 2287–2292 (1991).
Yeganeh-Haeri, A., Weidner, D. J. & Parise, J. B. Science 257, 650–652 (1992).
Lakes, R. S. Science 235, 1038–1040 (1987).
Guo, Y., Karasawa, N. & Goddard, W. A. Nature 351, 464–467 (1991).
Allinger, N. L. & Spraque, J. T. J. Am. chem. Soc. 95, 3893–3900 (1973).
Kao, J. & Allinger, N. L. J. Am. chem. Soc. 99, 975–986 (1977).
Heravi, M. J.-, McManus, S. P., Zutaut, S. E. & McDonald, J. K. Macromolecules 24, 1055–1063 (1991).
Allen, F. H. et al. J. chem. Soc. Perkins Trans. II S1–S19 (1987).
Wegner, G. Naturforsch. 24b, 824–832 (1969).
Klepp, K. & Parthé, E. Acta crystallogr. B38, 1105–1108 (1982).
Hoffmann, R., Hughbanks, T., Kertesz, M. & Bird, P. H. J. Am. chem. Soc. 105, 4831–4832 (1983).
Liu, A. Y. & Cohen, M. L. Phys. Rev. B43, 6742–6745 (1992).
Brédas, J. L., Chance, R. R., Baughman, R. H. & Silbey, R. Int. J. Quantum Chem. 15, 231–241 (1981).
Batchelder, D. N. Contemp. Phys. 29, 3–31 (1988).
Koshihara, S., Tokura, Y., Takeda, K. & Koda, T. Phys. Rev. Lett. 68, 1148–1151 (1992).
Baughman, R. H. Makromol. Chemie Macromol. Symp. 51, 193–215 (1991).
Diederich, F. & Rubin, Y. Angew. Chem. Int. Edn engl. 31, 1101–1123 (1992).
Wu, Z., Lee, S. & Moore J. S. J. Am. chem. Soc. 114, 8730–8732 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Baughman, R., Galvão, D. Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993). https://doi.org/10.1038/365735a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/365735a0
Further reading
-
Mathematical modeling of auxetic systems: bridging the gap between analytical models and observation
International Journal of Mechanical and Materials Engineering (2021)
-
A perspective on auxetic nanomaterials
Nano Convergence (2017)
-
Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides
Nature Communications (2017)
-
Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami
Scientific Reports (2016)
-
Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ
Cellulose (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.