Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystalline networks with unusual predicted mechanical and thermal properties

Abstract

MOST materials shrink laterally and become less dense when stretched. Materials that both expand laterally (that is, have negative Poisson's ratio) and densify when stretched are of interest both from the fundamental and the practical points of view1–5. A few monocrystalline phases with negative Poisson's ratio are known3,4, but these do not densify when stretched. Here we present molecular-mechanics calculations for some hypothetical phases of carbon which exhibit both kinds of behaviour. The properties derive from the presence of bonds that act as hinges in extended helical chains. Other unusual properties of these phases include negative thermal expansion, dopant-controlled porosity and low-temperature polymorphism. Such structures can be envisaged for polyacetylene, polydiacetylene, polyphenylene and (BN)x phases, as well as for variants of some known, structurally related inorganic phases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Evans, K. E., Nkansa, M. A., Hutchinson, I. J. & Rogers, S. C. Nature 353, 124 (1991).

    ADS  CAS  Article  Google Scholar 

  2. Gibson, L. J., Ashby, M. F., Schajer, G. S. & Robertson, C. I. Proc. R. Soc. A382, 25–42 (1982).

    ADS  Article  Google Scholar 

  3. Lakes, R. S. Adv. Mater. 5, 293–296 (1993); J. Mater. Sci. 26, 2287–2292 (1991).

    CAS  Article  Google Scholar 

  4. Yeganeh-Haeri, A., Weidner, D. J. & Parise, J. B. Science 257, 650–652 (1992).

    ADS  CAS  Article  Google Scholar 

  5. Lakes, R. S. Science 235, 1038–1040 (1987).

    ADS  CAS  Article  Google Scholar 

  6. Guo, Y., Karasawa, N. & Goddard, W. A. Nature 351, 464–467 (1991).

    ADS  CAS  Article  Google Scholar 

  7. Allinger, N. L. & Spraque, J. T. J. Am. chem. Soc. 95, 3893–3900 (1973).

    CAS  Article  Google Scholar 

  8. Kao, J. & Allinger, N. L. J. Am. chem. Soc. 99, 975–986 (1977).

    CAS  Article  Google Scholar 

  9. Heravi, M. J.-, McManus, S. P., Zutaut, S. E. & McDonald, J. K. Macromolecules 24, 1055–1063 (1991).

    ADS  Article  Google Scholar 

  10. Allen, F. H. et al. J. chem. Soc. Perkins Trans. II S1–S19 (1987).

  11. Wegner, G. Naturforsch. 24b, 824–832 (1969).

    Article  Google Scholar 

  12. Klepp, K. & Parthé, E. Acta crystallogr. B38, 1105–1108 (1982).

    Article  Google Scholar 

  13. Hoffmann, R., Hughbanks, T., Kertesz, M. & Bird, P. H. J. Am. chem. Soc. 105, 4831–4832 (1983).

    CAS  Article  Google Scholar 

  14. Liu, A. Y. & Cohen, M. L. Phys. Rev. B43, 6742–6745 (1992).

    Article  Google Scholar 

  15. Brédas, J. L., Chance, R. R., Baughman, R. H. & Silbey, R. Int. J. Quantum Chem. 15, 231–241 (1981).

    Google Scholar 

  16. Batchelder, D. N. Contemp. Phys. 29, 3–31 (1988).

    ADS  CAS  Article  Google Scholar 

  17. Koshihara, S., Tokura, Y., Takeda, K. & Koda, T. Phys. Rev. Lett. 68, 1148–1151 (1992).

    ADS  CAS  Article  Google Scholar 

  18. Baughman, R. H. Makromol. Chemie Macromol. Symp. 51, 193–215 (1991).

    CAS  Article  Google Scholar 

  19. Diederich, F. & Rubin, Y. Angew. Chem. Int. Edn engl. 31, 1101–1123 (1992).

    Article  Google Scholar 

  20. Wu, Z., Lee, S. & Moore J. S. J. Am. chem. Soc. 114, 8730–8732 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baughman, R., Galvão, D. Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993). https://doi.org/10.1038/365735a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365735a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing