Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth

Abstract

THEORIES for the origin of life require the availability of reduced (or 'fixed') nitrogen-containing compounds, in particular ammonia. In reducing atmospheres, such compounds are readily formed by electrical discharges1,2, but geochemical evidence suggests that the early Earth had a non-reducing atmosphere1,3–6, in which discharges would have instead produced NO (refs 7–10). This would have been converted into nitric and nitrous acids and delivered to the early oceans as acid rain11. It is known12–15, however, that Fe(II) was present in the early oceans at much higher concentrations than are found today, and thus the oxidation of Fe(II) to Fe(III) provides a possible means for reducing nitrites and nitrates to ammonia. Here we explore this possibility in a series of experiments which mimic a broad range of prebiotic seawater conditions (the actual conditions on the early Earth remain poorly constrained). We find that the reduction by Fe(II) of nitrites and nitrates to ammonia could have been a significant source of reduced nitrogen on the early Earth, provided that the ocean pH exceeded 7.3 and is favoured for temperatures greater than about 25 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schopf, J. W. (ed.) Earth's Earliest Biosphere 53–92 (Princeton Univ. Press, 1983).

  2. Stribling, R. & Miller, S. L. Orig. Life Evol. Biosph. 17, 261–273 (1978).

    Article  Google Scholar 

  3. Walker, J. C. G. Orig. Life Evol. Biosph. 16, 117–127 (1985).

    Article  CAS  Google Scholar 

  4. Mattioli, G. S. & Wood, B. J. Nature 322, 626–628 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B. (eds) Chemical Cycles in the Evolution of the Earth 42–79 (Wiley, New York, 1988).

  6. Kasting, J. F. Precambr. Res. 34, 205–229 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Chameides, W. L. & Walker, J. C. G. Orig. Life Evol. Biosph. 11, 291–302 (1981).

    Article  CAS  Google Scholar 

  8. Yung, Y. L. & McElroy, M. B. Science 203, 1002–1004 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Kasting, J. F. Orig. Life Evol. Biosph. 20, 199–231 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Fegley, B. Jr, Prinn, R. G., Hartman, H. & Watkins, G. H. Nature 319, 305–308 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Mancinelli, R. L. & McKay, C. P. Orig. Life Evol. Biosph. 18, 311–325 (1988).

    Article  CAS  Google Scholar 

  12. H. D. Holland Econ. Geol. 68, 1169–1172 (1973).

    Article  CAS  Google Scholar 

  13. Walker, J. C. G. & Brimblecombe, P. Precambr. Res. 28, 205–222 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Derry, L. A. & Jacobsen, S. B. Geochim. Cosmochim. Acta 54, 2965–2975 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans Ch. 4 (Princeton Univ. Press, 1989).

    Google Scholar 

  16. Buresh, R. J. & Moraghan, J. T. J. envir. Qual. 5, 320–324 (1976).

    Article  CAS  Google Scholar 

  17. Walker, C. G. J. et al. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 260–284 (Princeton Univ. Press, 1983).

    Google Scholar 

  18. Chyba, C. & Sagan, C. Orig. Life Evol. Biosph. 21, 3–17 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Grätzel, Von M., Taniguchi, S. & Henglein, A. Ber. Bunsenges. phys. Chem. 74, 1003–1010 (1970).

    Article  Google Scholar 

  20. Doyle, M. P. & Mahapatro, S. N. J. Am. chem. Soc. 106, 3678–3679 (1984).

    Article  CAS  Google Scholar 

  21. Butler, J. N. Carbon Dioxide Equilibria and Their Applications (Addison-Wesley, Reading, MA, 1982)

    Google Scholar 

  22. Freier, R. K. (ed.) Aqueous Solutions Vol 1 (de Gruyter, Berlin, 1976).

  23. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans 205 (Princeton Univ. Press).

  24. Windley, B. F. (ed.) The Early History of the Earth (Wiley, New York, 1976).

  25. Turcotte, D. L. Earth planet. Sci. Lett. 48, 50–53 (1980).

    Article  ADS  Google Scholar 

  26. Kasting, J. F., Zahnle, K. J., Pinto, J. P. & Young, A. T. Orig. Life Evol. Biosph. 19, 95–108 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Zafiriou, O. C. & True, M. B. Mar. Chem. 8, 9–32 (1979).

    Article  CAS  Google Scholar 

  28. Broecker, W. S. & Peng, T.-H. Tracers in the Sea 243 (Lamont-Doherty geol. Obs. Palisades, 1982).

    Google Scholar 

  29. Kasting, J. F. J. geophys. Res. 87, 3091–3098 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Bada, J. L. & Miller, S. L. Science 159, 423–425 (1968).

    Article  ADS  CAS  Google Scholar 

  31. Kuhn, W. E. & Kasting, J. F. Nature 301, 53–55 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Walker, C. G. J. Orig. Life Evol. Biosph. 16, 117–127 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, D., Chang, S. Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature 365, 630–633 (1993). https://doi.org/10.1038/365630a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing