Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient light-emitting diodes based on polymers with high electron affinities

Abstract

CONJUGATED polymers have been incorporated as active materials into several kinds of electronic device, such as diodes, transistors1 and light-emitting diodes2. The first polymer light-emitting diodes were based on poly(p-phenylene vinylene) (PPV), which is robust and has a readily processible precursor polymer. Electroluminescence in this material is achieved by injection of electrons into the conduction band and holes into the valence band, which capture one another with emission of visible radiation. Efficient injection of electrons has previously required the use of metal electrodes with low work functions, primarily calcium; but this reactive metal presents problems for device stability. Here we report the fabrication of electroluminescent devices using a new family of processible poly(cyanoterephthalylidene)s. As the lowest unoccupied orbitals of these polymers (from which the conduction band is formed) lie at lower energies than those of PPV, electrodes made from stable metals such as aluminium can be used for electron injection. For hole injection, we use indium tin oxide coated with a PPV layer; this helps to localize charge at the interface between the PPV and the new polymer, increasing the efficiency of recombination. In this way, we are able to achieve high internal efficiencies (photons emitted per electrons injected) of up to 4% in these devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burroughes, J. H., Jones, C. A. & Friend, R. H. Nature 335, 137–141 (1988).

    Article  ADS  Google Scholar 

  2. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Braun, D. & Heeger, A. J. Appl. Phys. Lett. 58, 1982–1984 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Jap. J. appl. Phys. 30, L1938–L1940 (1991).

    Article  ADS  Google Scholar 

  5. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Jap. J. appl. Phys. 30, L1941–L1943 (1991).

    Article  ADS  Google Scholar 

  6. Grem, G., Leditzky, G., Ullrich, B. & Leising, G. Adv. Mater. 4, 36–37 (1992).

    Article  CAS  Google Scholar 

  7. Burn, P. L. et al. Nature 356, 47–49 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Holmes, A. B. et al. Synth. Met. 55–57, 4031–4040 (1993).

    Article  Google Scholar 

  9. Friend, R. H., Bradley, D. D. C. & Holmes, A. B. Phys. World 5, 42–46 (1992).

    Article  CAS  Google Scholar 

  10. Tang, C. W. & VanSlyke, S. A. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Adachi, C., Tsutsui, T. & Saito, S. Appl. Phys. Lett 57, 531–533 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Burn, P. L. et al. in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials Vol. 245 (eds Chiang, L. Y., Garito, A. F. & Sandman, D. J.) 647–654 (Mater. Res. Soc. Symp. N, Pittsburgh, 1992).

    Google Scholar 

  13. Brown, A. R. et al. Appl. Phys. Lett. 61, 2793–2795 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Solid St. Commun. 80, 605–608 (1991).

    Article  ADS  Google Scholar 

  15. Doi, S., Kuwabara, M., Noguchi, T. & Ohnishi, T. Synth. Met. 55–57, 4174–4179 (1993).

    Article  Google Scholar 

  16. Lenz, R. W. & Handlovitis, C. E. J. org. Chem. 25, 813–817 (1960).

    Article  CAS  Google Scholar 

  17. Hörhold, H.-H. Z. Chem. 12, 41–52 (1972).

    Google Scholar 

  18. Burn, P. L. et al. J. chem. Soc., Perkin Trans. 1, 3225–3231 (1992).

    Article  Google Scholar 

  19. Helbig, M. & Hörhold, H.-H. Makromol. Chem. 194, 1607–1618 (1993).

    Article  CAS  Google Scholar 

  20. Karg, S. et al. in Proc. 6th Symp. on Unconventional Photoactive Solids Leuven, Belgium, 1993; also as Molec. Cryst. liq. Cryst. (in the press).

    Google Scholar 

  21. Dannetun, P. et al. Synth. Met. 55–57, 212–217 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenham, N., Moratti, S., Bradley, D. et al. Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365, 628–630 (1993). https://doi.org/10.1038/365628a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365628a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing