Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxygen sensing in airway chemoreceptors

Abstract

PULMONARY neuroepithelial bodies, composed of innervated clus-ters of amine- and peptide-containing cells, are widely distributed throughout the airway mucosa of human and animal lungs1–3. Structurally, neuroepithelial bodies resemble chemoreceptors (such as carotid body, taste buds) and are thought to function as hypoxia-sensitive airway sensors4. Evidence for this is indirect, however, and the mechanism of oxygen sensing by these cells is unknown. Here we culture neuroepithelial bodies isolated from rabbit fetal lungs and identify voltage-activated potassium, calcium and sodium currents using the whole-cell patch clamp technique. Upon exposure to hypoxia there is a reversible reduction (25–30%) in the outward potassium current, with no change in inward currents. In addition, we demonstrate the expression of an oxygen-binding protein (b-cytochrome, NADPH oxidase) on the plasma membrane of these cells. The identification of an oxygen-sensing mechanism (namely the presence of an O2-sensitive potassium channel coupled to an O2 sensor protein5) in the cells of pulmonary neuroepithelial bodies indicates that they are transducers of the hypoxia stimulus and hence may function as airway chemoreceptors in the regulation of respiration.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Lauweryns, J. M. & Cokelaere, M. Z. Zellforsch. 145, 521–540 (1973).

    CAS  Article  Google Scholar 

  2. Cutz, E., Gillan, J. & Track, N. in The Endocrine Lung in Health and Disease (eds Becker, K. L. & Gazdar, A. F.) 210–231 (Saunders, Philadelphia, 1984).

    Google Scholar 

  3. Lauweryns, J. M. & VanLommel, A. Expl Lung Res. 11, 319–339 (1986).

    CAS  Article  Google Scholar 

  4. Lauweryns, J. M. et al. Cell Tiss. Res. 182, 425–440 (1977).

    CAS  Article  Google Scholar 

  5. Gonzalez, C., Almaraz, L., Obeso, A. & Rigual, R. Trends Neurosci. 15, 146–153 (1992).

    CAS  Article  Google Scholar 

  6. Cutz, E. et al. Lab. Invest. 53, 672–683 (1985).

    CAS  PubMed  Google Scholar 

  7. Stuart, A. E., Hudspeth, A. J. & Hall, Z. W. Cell Tiss. Res. 153, 55–61 (1974).

    CAS  Article  Google Scholar 

  8. Hamill, O. P., Marty, A., Neher, E., Sackmann, B. & Sigworth, F. Pflugers Arch. 391, 85–100 (1981).

    CAS  Article  Google Scholar 

  9. Acker, H., Dufau, E., Huber, J. & Sylvester, D. FEBS Lett. 256, 75–78 (1989).

    CAS  Article  Google Scholar 

  10. Jesaitis, A. J. et al. J. clin. Invest. 85, 821–835 (1990).

    CAS  Article  Google Scholar 

  11. Parkos, C. A., Allen, R. A., Cochrane, C. G. & Jesaitis, A. J. J. clin. Invest. 80, 732–742 (1987).

    CAS  Article  Google Scholar 

  12. Cross, A. R. et al. Biochem. J. 272, 743–747 (1990).

    CAS  Article  Google Scholar 

  13. Lopez-Barneo, J., Lopez-Lopez, J. R., Urena, J. & Gonzalez, C. Science 241, 580–582 (1988).

    ADS  CAS  Article  Google Scholar 

  14. Stea, A. & Nurse, C. A. Pflugers Arch. 418, 93–101 (1991).

    CAS  Article  Google Scholar 

  15. Lopez-Lopez, J., Gonzalez, C., Urena, J. & Lopez-Barneo, J. J. gen. Physiol. 93, 1001–1015 (1989).

    CAS  Article  Google Scholar 

  16. Stea, A. & Nurse, C. A. Neuroscience 47, 727–736 (1992).

    CAS  Article  Google Scholar 

  17. Ganfornina, M. D. & Lopez-Barneo, J. Proc. natn. Acad. Sci. U.S.A. 88, 2927–2930 (1991).

    ADS  CAS  Article  Google Scholar 

  18. Cutz, E. et al. in Arterial Chemoreception (eds Eyzaguirre, C., Fidone, S. J., Fitzgerald, R. S., Lahiri, S. & McDonald, D. M.) 432–437 (Springer, New York, 1990).

    Book  Google Scholar 

  19. Cho, T., Chan, W. & Cutz, E. Cell Tiss. Res. 255, 353–362 (1989).

    CAS  Article  Google Scholar 

  20. Hertzberg, T., Hellstrom, S., Lagercratz, H. & Pequignot, J. M. J. Physiol. 425, 211–225 (1990).

    CAS  Article  Google Scholar 

  21. Perrin, D. G., McDonald, T. J. & Cutz, E. Ped. Path. 11, 431–447 (1991).

    CAS  Google Scholar 

  22. Gazdar, A. F. et al. Cancer Res. 48, 4078–4082 (1988).

    CAS  PubMed  Google Scholar 

  23. Moody, T. W., Pert, C. B., Gazdar, A. F., Carney, D. N. & Minna, J. D. Science 214, 1246–1248 (1981).

    ADS  CAS  Article  Google Scholar 

  24. Schuller, H. M. Expl Lung Res. 17, 837–852 (1991).

    ADS  CAS  Article  Google Scholar 

  25. Polak, J. M. et al. Anat. Rec. 236, 169–171 (1993).

    CAS  Article  Google Scholar 

  26. Zaccone, G. et al. Acta zoologica 73, 177–183 (1992).

    Article  Google Scholar 

  27. Sternberger, L. A. Immunocytochemistry 104–109 (Wiley, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Youngson, C., Nurse, C., Yeger, H. et al. Oxygen sensing in airway chemoreceptors. Nature 365, 153–155 (1993). https://doi.org/10.1038/365153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365153a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing