Abstract
The crystal structure of intact elongation factor Tu (EF-Tu) from Thermus thermophilus has been determined and refined at an effective resolution of 1.7 Å, with incorporation of data extending to 1.45 Å. The effector region, including interaction sites for the ribosome and for transfer RNA, is well defined. Molecular mechanisms are proposed for transductlon and amplification of the signal induced by GTP binding as well as for the intrinsic and effector-enhanced GTPase activity of EF-Tu. Comparison of the structure with that of EF-Tu–GDP reveals major mutual rearrange-ments of the three domains of the molecule.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lucas-Lenard, J. & Lipmann, F. Proc. natn. Acad. Sci. U.S.A. 55, 1562–1566 (1966).
Miller, D. L. & Weissbach, H. Arch. Biochem. Biophys. 141, 26–37 (1970).
Eccleston, J. F., Dix, D. B. & Thompson, R. C. J. blol. Chem. 260, 16237–16241 (1985).
Pingoud, A., Block, W., Urbanke, C. & Wolf, H. Eur. J. Biochem. 123, 261–265 (1982).
Anborgh, P. H. & Parmeggiani, A. EMBO J. 10, 779–784 (1991).
Blumenthal, T., Landers, T. A. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 69, 1313–1317 (1972).
Miller, D. L. & Weissbach, H. in Molecular Mechanisms of Protein Biosynthesis (ed. Weissbach, H.) 323–373 (Academic, New York, 1977).
Thompson, R. C. & Karim, A. M. Proc. natn. Acad. Sci. U.S.A. 79, 4922–4926 (1982).
Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).
Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).
Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).
Pai, E. F. et al. EMBO J. 9, 2351–2359 (1990).
Milburn, M. V. et al. Science 247, 939–945 (1990).
Hall, A. Cell 61, 921–923 (1990).
Jurnak, F. Science 230, 32–36 (1985).
Ia Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. EMBO J. 4, 2385–2388 (1985).
Kjeldgaard, M. & Nyborg, J. J. molec. Biol. 223, 721–742 (1992).
Gast, W. H., Kabsch, W., Wittinghofer, A. & Leberman, R. FEBS Lett. 74, 88–90 (1977).
Peter, M. E., Schirmer, N. K., Reiser, C. O. A. & Sprinzl, M. Biochemistry 29, 2876–2884 (1990).
Nakamura, S. et al. Eur. J. Biochem. 92, 533–543 (1978).
Seidler, L., Peter, M., Meissner, F. & Sprinzl, M. Nucleic Acids Res. 15, 9263–9277 (1987).
Kushiro, A., Shimizu, M. & Tomita, K.-I. Eur. J. Biochem. 170, 93–98 (1987).
Reshetnikova, L. S. et al. J. molec. Biol. 221, 375–377 (1991).
Reshetnikova, L. S. et al. J. cryst. Growth 122, 360–365 (1992).
Tong, L., de Vos, A. M., Milburn, N. V. & Kim, S.-H. J. molec. Biol. 217, 503–516 (1991).
Kabsch, W., Gast, W. H., Schulz, G. E. & Leberman, R. J. molec. Biol. 117, 999–1012 (1977).
Arai, K.-I., Arai, N., Nakamura, S., Oshima, T. & Kaziro, Y. Eur. J. Biochem. 92, 521–531 (1978).
Gilman, A. G. A. Rev. Biochem. 56, 615–649 (1987).
Eccleston, J. F. & Webb, M. R. J. biol. Chem. 257, 5046–5049 (1982).
Limmer, S., Reiser, C. O. A., Schirmer, N. K., Grillenbeck, N. W. & Sprinzl, M. Biochemistry 31, 2970–2977 (1992).
Cool, R. H. & Parmeggiani, A. Biochemistry 30, 362–366 (1991).
Jacquet, E. & Parmeggiani, A. EMBO J. 7, 2861–2867 (1988).
Duffy, L. K., Gerber, L., Johnson, A. E. & Miller, D. L. Biochemistry 20, 4663–4666 (1981).
Metz-Boutigue, M. -H., Reinbolt, J., Ebel, J.-P., Ehresmann, C. & Ehresmann, B. FEBS Lett. 245, 194–200 (1989).
Jonak, J., Petersen, T. E., Meloun, B. & Rychlik, I. Eur. J. Biochem. 144, 295–303 (1984).
Ott, G., Jonak, J., Abrahams, I. P. & Sprinzl, M. Nucleic Acids Res. 18, 437–441 (1990).
Parmeggiani, A. et al. Proc. natn. Acad. Sci. U.S.A. 84, 3141–3145 (1987).
Kinzy, T. G., Freeman, J. P., Johnson, A. E. & Merrick, N. C. J. biol. Chem. 267, 1623–1632 (1992).
Peter, M. E. et al. Nucleic Acids Res. 18, 6889–6893 (1990).
Hwang, Y.-W., Jurnak, F. & Miller, D. L. in The Guanine Nucleotide-Binding Proteins (eds Bosch, L., Kraal, B. & Parmeggiani, A.) 77–85 (Plenum, New York, 1989).
Brünger, A. T. Acta crystallogr. Ser. A 46, 46–57 (1990).
Brünger, A. T. X-PLOR 2.1 Manual 240 (Harvard University, 1990)
Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).
Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).
Collaborative Computing Project No. 4, SERC Daresbury Laboratory, UK (1979).
Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).
Brünger, A. T., Kurowski, A. & Erickson, J. Acta crystallogr. Sect. A 46, 585–593 (1990).
Bhat, T. N. J. appl. Crystallogr. 21, 279–281 (1988).
Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).
Brünger, A. T. Nature 355, 472–475 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Berchtold, H., Reshetnikova, L., Reiser, C. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993). https://doi.org/10.1038/365126a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/365126a0
This article is cited by
-
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading
Nature (2020)
-
Identifying conformational changes with site-directed spin labeling reveals that the GTPase domain of HydF is a molecular switch
Scientific Reports (2017)
-
Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B
Journal of Computer-Aided Molecular Design (2017)
-
Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases
Nature Communications (2016)
-
The pathway to GTPase activation of elongation factor SelB on the ribosome
Nature (2016)