Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of active elongation factor Tu reveals major domain rearrangements

An Erratum to this article was published on 23 September 1993

Abstract

The crystal structure of intact elongation factor Tu (EF-Tu) from Thermus thermophilus has been determined and refined at an effective resolution of 1.7 Å, with incorporation of data extending to 1.45 Å. The effector region, including interaction sites for the ribosome and for transfer RNA, is well defined. Molecular mechanisms are proposed for transductlon and amplification of the signal induced by GTP binding as well as for the intrinsic and effector-enhanced GTPase activity of EF-Tu. Comparison of the structure with that of EF-Tu–GDP reveals major mutual rearrange-ments of the three domains of the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lucas-Lenard, J. & Lipmann, F. Proc. natn. Acad. Sci. U.S.A. 55, 1562–1566 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Miller, D. L. & Weissbach, H. Arch. Biochem. Biophys. 141, 26–37 (1970).

    Article  CAS  Google Scholar 

  3. Eccleston, J. F., Dix, D. B. & Thompson, R. C. J. blol. Chem. 260, 16237–16241 (1985).

    CAS  Google Scholar 

  4. Pingoud, A., Block, W., Urbanke, C. & Wolf, H. Eur. J. Biochem. 123, 261–265 (1982).

    Article  CAS  Google Scholar 

  5. Anborgh, P. H. & Parmeggiani, A. EMBO J. 10, 779–784 (1991).

    Article  CAS  Google Scholar 

  6. Blumenthal, T., Landers, T. A. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 69, 1313–1317 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Miller, D. L. & Weissbach, H. in Molecular Mechanisms of Protein Biosynthesis (ed. Weissbach, H.) 323–373 (Academic, New York, 1977).

    Google Scholar 

  8. Thompson, R. C. & Karim, A. M. Proc. natn. Acad. Sci. U.S.A. 79, 4922–4926 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).

    Article  CAS  Google Scholar 

  10. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Pai, E. F. et al. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  13. Milburn, M. V. et al. Science 247, 939–945 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Hall, A. Cell 61, 921–923 (1990).

    Article  CAS  Google Scholar 

  15. Jurnak, F. Science 230, 32–36 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Ia Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. EMBO J. 4, 2385–2388 (1985).

    Article  Google Scholar 

  17. Kjeldgaard, M. & Nyborg, J. J. molec. Biol. 223, 721–742 (1992).

    Article  CAS  Google Scholar 

  18. Gast, W. H., Kabsch, W., Wittinghofer, A. & Leberman, R. FEBS Lett. 74, 88–90 (1977).

    Article  CAS  Google Scholar 

  19. Peter, M. E., Schirmer, N. K., Reiser, C. O. A. & Sprinzl, M. Biochemistry 29, 2876–2884 (1990).

    Article  CAS  Google Scholar 

  20. Nakamura, S. et al. Eur. J. Biochem. 92, 533–543 (1978).

    Article  CAS  Google Scholar 

  21. Seidler, L., Peter, M., Meissner, F. & Sprinzl, M. Nucleic Acids Res. 15, 9263–9277 (1987).

    Article  CAS  Google Scholar 

  22. Kushiro, A., Shimizu, M. & Tomita, K.-I. Eur. J. Biochem. 170, 93–98 (1987).

    Article  CAS  Google Scholar 

  23. Reshetnikova, L. S. et al. J. molec. Biol. 221, 375–377 (1991).

    Article  CAS  Google Scholar 

  24. Reshetnikova, L. S. et al. J. cryst. Growth 122, 360–365 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Tong, L., de Vos, A. M., Milburn, N. V. & Kim, S.-H. J. molec. Biol. 217, 503–516 (1991).

    Article  CAS  Google Scholar 

  26. Kabsch, W., Gast, W. H., Schulz, G. E. & Leberman, R. J. molec. Biol. 117, 999–1012 (1977).

    Article  CAS  Google Scholar 

  27. Arai, K.-I., Arai, N., Nakamura, S., Oshima, T. & Kaziro, Y. Eur. J. Biochem. 92, 521–531 (1978).

    Article  CAS  Google Scholar 

  28. Gilman, A. G. A. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  29. Eccleston, J. F. & Webb, M. R. J. biol. Chem. 257, 5046–5049 (1982).

    CAS  PubMed  Google Scholar 

  30. Limmer, S., Reiser, C. O. A., Schirmer, N. K., Grillenbeck, N. W. & Sprinzl, M. Biochemistry 31, 2970–2977 (1992).

    Article  CAS  Google Scholar 

  31. Cool, R. H. & Parmeggiani, A. Biochemistry 30, 362–366 (1991).

    Article  CAS  Google Scholar 

  32. Jacquet, E. & Parmeggiani, A. EMBO J. 7, 2861–2867 (1988).

    Article  CAS  Google Scholar 

  33. Duffy, L. K., Gerber, L., Johnson, A. E. & Miller, D. L. Biochemistry 20, 4663–4666 (1981).

    Article  CAS  Google Scholar 

  34. Metz-Boutigue, M. -H., Reinbolt, J., Ebel, J.-P., Ehresmann, C. & Ehresmann, B. FEBS Lett. 245, 194–200 (1989).

    Article  CAS  Google Scholar 

  35. Jonak, J., Petersen, T. E., Meloun, B. & Rychlik, I. Eur. J. Biochem. 144, 295–303 (1984).

    Article  CAS  Google Scholar 

  36. Ott, G., Jonak, J., Abrahams, I. P. & Sprinzl, M. Nucleic Acids Res. 18, 437–441 (1990).

    Article  CAS  Google Scholar 

  37. Parmeggiani, A. et al. Proc. natn. Acad. Sci. U.S.A. 84, 3141–3145 (1987).

    Article  ADS  CAS  Google Scholar 

  38. Kinzy, T. G., Freeman, J. P., Johnson, A. E. & Merrick, N. C. J. biol. Chem. 267, 1623–1632 (1992).

    CAS  PubMed  Google Scholar 

  39. Peter, M. E. et al. Nucleic Acids Res. 18, 6889–6893 (1990).

    Article  CAS  Google Scholar 

  40. Hwang, Y.-W., Jurnak, F. & Miller, D. L. in The Guanine Nucleotide-Binding Proteins (eds Bosch, L., Kraal, B. & Parmeggiani, A.) 77–85 (Plenum, New York, 1989).

    Book  Google Scholar 

  41. Brünger, A. T. Acta crystallogr. Ser. A 46, 46–57 (1990).

    Article  Google Scholar 

  42. Brünger, A. T. X-PLOR 2.1 Manual 240 (Harvard University, 1990)

    Google Scholar 

  43. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  44. Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  45. Collaborative Computing Project No. 4, SERC Daresbury Laboratory, UK (1979).

  46. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  47. Brünger, A. T., Kurowski, A. & Erickson, J. Acta crystallogr. Sect. A 46, 585–593 (1990).

    Article  Google Scholar 

  48. Bhat, T. N. J. appl. Crystallogr. 21, 279–281 (1988).

    Article  Google Scholar 

  49. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  50. Brünger, A. T. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchtold, H., Reshetnikova, L., Reiser, C. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993). https://doi.org/10.1038/365126a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365126a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing