Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen

Abstract

SEVERAL bacterial pathogens of medical importance are able to persist and replicate inside host mononuclear phagocytes. Protective immunity depends on specific T lymphocytes that induce granulomatous lesions at the sites of bacterial multiplication1,2. Listeria monocytogenes is an intracellular pathogen that replicates inside mononuclear phagocytes and hepatocytes of mice1–4. Invasion from the phagosomal compartment into the cytoplasmic compartment is the principal mechanism of intracellular survival5. Early in infec-tion, resistance against L. monocytogenes is mediated by polymor-phonuclear phagocytes which destroy infected liver cells, followed by natural killer cells which activate macrophages by means of interferon-γ (refs 6, 7). A specific immune response by T cells then develops which leads to sterile eradication of the microbes1,2,8. T cells are also responsible for the highly effective protection in vaccinated mice against secondary infections1,2. Although the role of αβ T cells has been demonstrated in these immune responses, that of γδ T cells is unclear2,9,10. Here we use mice that selectively lack either αβ or γδ T cells as a result of targeted germ-line mutations in their T-cell receptor genes11,12 to investigate the relative roles of these T-cell populations during experimental infection with L. monocytogenes. We find that in primary listeriosis, either αβ or γδ T cells are sufficient for early protection. Resistance to second-ary infection is mediated mainly by αβ T cells but also involves γδd T cells. Thus αβ T-cell-deficient mice can be rendered partially resistant by vaccination, and γδ T cells are shown to be responsible for this protective effect. In infected γδ T-cell-deficient mice we noticed the appearance of unusual liver lesions, indicating that γδ T cells have a unique regulatory role in this bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hahn, H. & Kaufmann, S. H. E. Rev. Infect. Dis. 3, 1221–1250 (1981).

    Article  CAS  Google Scholar 

  2. Kaufmann, S. H. E. A. Rev. Immun. 11, 129–163 (1993).

    Article  CAS  Google Scholar 

  3. Gregory, S. H., Wing, E. J., Hoffman, R. A. & Simmons, R. L. J. Immun. 150, 2901–2909 (1993).

    CAS  PubMed  Google Scholar 

  4. North, R. J. J. exp. Med. 132, 521–524 (1970).

    Article  CAS  Google Scholar 

  5. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. J. exp. Med. 167, 1459–1471 (1988).

    Article  CAS  Google Scholar 

  6. Conlan, J. W. & North, R. J. J. exp. Med. 174, 741–744 (1991).

    Article  CAS  Google Scholar 

  7. Bancroft, G. J., Schreiber, R. D. & Unanue, E. R. Immun. Rev. 124, 5–24 (1991).

    Article  CAS  Google Scholar 

  8. Kaufmann, S. H. E. & Hahn, H. J. exp. Med. 155, 1754–1765 (1982).

    Article  CAS  Google Scholar 

  9. Hiromatsu, K. et al. J. exp. Med. 175, 49–56 (1992).

    Article  CAS  Google Scholar 

  10. Haas, W., Pereira, P. & Tonegawa, S. A. Rev. Immun. 11, 637–686 (1993).

    Article  CAS  Google Scholar 

  11. Mombaerts, P. et al. Nature 360, 225–231 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Itohara, S. et al. Cell 72, 337–348 (1993).

    Article  CAS  Google Scholar 

  13. Goodman, T. & Lefrancois, L. J. exp. Med. 170, 1569–1581 (1989).

    Article  CAS  Google Scholar 

  14. Mombaerts, P. et al. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  15. Kaufmann, S. H. E., Hug, E., Väth, U. & Müller, I. Infect. Immun. 48, 263–266 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunn, P. L. & North, R. J. J. infect. Dis. 164, 869–877 (1991).

    Article  CAS  Google Scholar 

  17. Roberts, A. D., Ordway, D. J. & Orme, I. M. Infect. Immun. 61, 1113–1116 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Emmerling, P., Finger, H. & Bockemühl, J. Infect. Immun. 12, 437–439 (1974).

    Google Scholar 

  19. Baldridge, J. R., Barry, R. A. & Hinrichs, D. J. Infect. Immun. 58, 654–658 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchmeier, N. A. & Schreiber, R. D. Proc. natn. Acad. Sci. U.S.A. 82, 7404–7408 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Kiderlen, A. F., Kaufmann, S. H. E. & Lohmann-Matthes, M.-L. Eur. J. Immun. 14, 964–967 (1984).

    Article  CAS  Google Scholar 

  22. Harty, J. T., Schreiber, R. D. & Bevan, M. J. Proc. natn. Acad. Sci. U.S.A. 89, 11612–11616 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Kaufmann, S. H. E. Microbial Pathogen. 1, 249–260 (1986).

    Article  CAS  Google Scholar 

  24. Singh, I. G., Mukherjee, R., Talwar, G. P. & Kaufmann, S. H. E. Infect. Immun. 60, 257–263 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mombaerts, P., Arnoldi, J., Russ, F. et al. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365, 53–56 (1993). https://doi.org/10.1038/365053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing