Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Physical surface-complexation models for sorption at the mineral–water interface

Abstract

NONE of the traditional models of surface complexation of ions at oxide–water interfaces, such as the constant-capacitance, double-diffuse-layer and triple-layer models1–5, provides an explicit, quantitative treatment of ion solvation. Here I show that this process can be included quantitatively in surface-complexation theory by describing it using the Born theory of ion solvation6,7. In this way, the standard Gibbs free energy of sorption can be decomposed into three terms: the standard coulombic term, a Born solvation contribution and a term intrinsic to the ion alone. Consideration of the Born solvation term shows that the equilibrium constant for sorption depends linearly on the inverse of the dielectric constant of the solid. By this means, all three contributions to the free energy can be estimated empirically or calculated theoretically. Inclusion of this physical description of ion solvation should facilitate the application of the theory of ion sorption to complex natural oxide and silicate minerals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schindler, P. W. & Stumm, W. in Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface (ed. Stumm, W.) 83–110 (Wiley, New York, 1987).

    Google Scholar 

  2. Stumm, W. & Morgan, J. J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters 1–780 (Wiley, New York, 1981).

    Google Scholar 

  3. Davis, J. A. & Kent, D. B. in Mineral-Water Interface Geochemistry (eds Hochella, M. F. Jr & White, A. F.) 177–259 (Min. Soc. Am., Washington DC, 1990).

    Book  Google Scholar 

  4. Dzombak, D. A. & Morel, F.M.M. Surface Complexation Modelling 1–393 (Wiley, New York, 1990).

    Google Scholar 

  5. Davis, J. A. & Leckie, J. O. J. Colloid Inter. Sci. 67, 90–107 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Andersen, T. N. & Bockris, J. O. Electrochim. Acta 9, 347–371 (1964).

    Article  CAS  Google Scholar 

  7. James, R. O. & Healy, T. W. J. Colloid Inter. Sci. 40, 65–81 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Helgeson, H. C. & Kirkham, D. H. Am. J. Sci. 276, 97–240 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Helgeson, H. C., Kirkham, D. H. & Flowers, G. C. Am. J. Sci. 281, 1241–1516 (1981).

    Article  ADS  Google Scholar 

  10. Shock, E. L. & Helgeson, H. C. Geochim. cosmochim. Acta 52, 2009–2036 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Schindler, P. W., Liechti, P. & Westall, J. C. Neth. J. agric. Sci. 35, 219–230 (1987).

    CAS  Google Scholar 

  12. Shannon, R. D. & Prewitt, C. T. Acta crystallogr. B25, (1969).

  13. Sverjensky, D. A. & Molling, P. A. M. Nature 356, 231–234 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Sverjensky, D. A. Nature 358, 310–313 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Balistrieri, L. S. & Murray, J. W. Am. J. Sci. 281, 788–806 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Olhoeft, G. R. in Physical Properties of Rocks and Minerals (eds Touloukian, Y. S., Judd, W. R. & Roy, R. F.) 257–330 (McGraw-Hill, New York, 1981).

    Google Scholar 

  17. Shannon, R. D. & Rossman, G. R. Phys. Chem. Miner. 19, 157–165 (1992).

    ADS  CAS  Google Scholar 

  18. Ilton, E. S. & Veblen, D. R. EOS 74, 323 (1993).

    Google Scholar 

  19. Weast, R,. C. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Florida, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverjensky, D. Physical surface-complexation models for sorption at the mineral–water interface. Nature 364, 776–780 (1993). https://doi.org/10.1038/364776a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364776a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing