Activation of a carbon–carbon bond in solution by transition-metal insertion


CLEAVAGE of carbon–carbon bonds by transition-metal-containing heterogeneous catalysts forms the basis of one of the most important industrial processes, the refining of petroleum to chemicals and fuels1. But the generally low product selectivity observed with heterogeneous systems is a significant drawback. For this reason, much effort has been devoted to developing transition-metal complexes that can be inserted into C–C bonds in homogeneous media, as such catalysts can operate under mild, easily controlled conditions and might offer high selectivity and reactivity. Metal insertion into C–H bonds is well known2,3–5, but, except in a few special cases2,6–12, C–C bonds are generally unreactive towards insertion of transition metals in solution. Here we report the selective activation of a simple C–C bond by a mononuclear rhodium complex in a neutral homogeneous medium (tetrahydrofuran solution). We are able to effect Rh insertion into a C–C bond in a diphosphinoxylene, in which this bond is favourably oriented towards the transition-metal centre. The competing reaction of insertion into C–H is suppressed by the use of an overpressure of H2. We suggest that this approach might lead to a general strategy for C–C activation in homogeneous systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Sinflet, J. H. in Catalysis: Science and Technology Vol. 1 (eds Anderson, J. R. & Boudart, M.) 257–300 (Springer, New York, 1981).

    Google Scholar 

  2. 2

    Crabtree, R. H. Chem. Rev. 85, 245–269 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Bergman, R. G. Science 223, 902–908 (1984).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes (Reidal, Boston, 1984).

    Google Scholar 

  5. 5

    Maugh, T. H. Science 220, 1262–1263 (1983).

    ADS  Google Scholar 

  6. 6

    Periana, R. A. & Bergman, R. G. J. Am. chem. Soc. 108, 7346–7355 (1986).

    CAS  Article  Google Scholar 

  7. 7

    Crabtree, R. H., Dion, R. P., Gibboni, D. J., McGrath, D. V. & Holt, E. M. J. Am. chem. Soc. 108, 7222–7227 (1986).

    CAS  Article  Google Scholar 

  8. 8

    Kang, J. W., Moseley, R. & Maitlis, D. M. J. Am. chem. Soc. 91, 5970–5977 (1969).

    CAS  Article  Google Scholar 

  9. 9

    Benfield, F. W. C. & Green, M. L. H. J. chem. Soc. Dalton Trans. 1324–1331 (1974).

  10. 10

    Eilbracht, P. Chem. Ber. 113, 542–554 (1980).

    CAS  Article  Google Scholar 

  11. 11

    Suggs, J. W. & Jun, C.-H. J. Am. chem. Soc. 106, 3054–3056 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Hartwig, J. F., Anderson, R. A. & Bergman, R. G. J. Am. chem. Soc. 111, 2717–2719 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Watson, P. L. & Roe, D. C. J. Am. chem. Soc. 104, 6471–6473 (1982).

    CAS  Article  Google Scholar 

  14. 14

    Bunel, E., Burger, B. J. & Bercaw, J. E. J. Am. chem. Soc. 110, 976–978 (1988).

    CAS  Article  Google Scholar 

  15. 15

    Moulton, C. J. & Shaw, B. L. J. chem. Soc. Dalton Trans. 1020–1024 (1976).

  16. 16

    Rimml, H. & Venanzi, L. M. J. Organomet. Chem. 259, C6–C7 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Nemeh, S., Jensen, C., Binamira-Soriaga, E. & Kaska, W. C. Organometallics 2, 1442–1447 (1983).

    CAS  Article  Google Scholar 

  18. 18

    Milstein, D. Accts. chem. Res. 17, 221–226 (1984).

    CAS  Article  Google Scholar 

  19. 19

    Grove, D. M. et al. J. Am. chem. Soc. 104, 6609–6616 (1982).

    CAS  Article  Google Scholar 

  20. 20

    Blomberg, M. R. A., Siegbahn, P. E. M., Nagashima, U. & Wennerberg, J. J. Am. chem. Soc. 113, 424–433 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Low, J. J. & Goddard, W. A. Organometallics 5, 609–622 (1986).

    CAS  Article  Google Scholar 

  22. 22

    McMillen, D. F. & Golden, D. M. A. Rev. Phys. Chem. 33, 493–532 (1982).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Jones, W. D. & Feher, F. J. J. Am. chem. Soc. 106, 1650–1663 (1984).

    CAS  Article  Google Scholar 

  24. 24

    Martinho-Simoes, J. A. & Beauchamp, J. L. Chem. Rev. 90, 629–688 (1990).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gozin, M., Weisman, A., Ben-David, Y. et al. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing