Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Katydid synchronous chorusing is an evolutionarily stable outcome of female choice

Abstract

IN many animals that use rhythmic acoustic or bioluminescent sexual communication, neighbouring males precisely synchronize their signals1–4. This event has previously been interpreted as a development whereby cooperative individuals benefit from maintenance of species-specific signalling rates5,6, minimization of predation risks7,8, or maximization of peak signal amplitude of a local population2,9. Our recent findings on chorusing in the neotropical katydid Neoconocephalus spiza (Orthoptera: Tettigoniidae), however, refute for this species all three hypotheses that claim that synchrony is adaptive. Instead, we demonstrate that synchrony can be an epiphenomenon created by competitive interactions between males jamming each other's signals. The mechanism generating this interference is shown to be an evolutionarily stable strategy (ESS) maintained under sexual selection for exploiting a critical psychoacoustic feature: females orienting toward signalling males choose the leading call in a closely synchronized sequence.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Alexander, R. D. in Insects, Science, and Society (ed. Pimentel, D.) 35–77 (Academic, New York, 1975).

    Book  Google Scholar 

  2. Wells, K. D. Anim. Behav. 25, 666–693 (1977).

    Article  Google Scholar 

  3. Carlson, A. D. & Copeland, J. Q. Rev. Biol. 60, 415–436 (1985).

    Article  Google Scholar 

  4. Morin, J. G. Fla. Ent. 69, 105–121 (1986).

    ADS  Article  Google Scholar 

  5. Walker, T. J. Science 166, 891–894 (1969).

    ADS  CAS  Article  Google Scholar 

  6. Lloyd, J. E. Nature 245, 268–270 (1973).

    ADS  Article  Google Scholar 

  7. Otte, D. in How Animals Communicate (ed. Sebeok, T. A.) 334–361 (Indiana Univ. Press, 1977).

    Google Scholar 

  8. Tuttle, M. D. & Ryan, M. J. Behavl ecol. Sociobiol. 11, 125–131 (1982).

    Article  Google Scholar 

  9. Buck, J. & Buck, E. Am. Nat. 112, 471–492 (1978).

    Article  Google Scholar 

  10. Walker, T. J. & Greenfield, M. D. Trans. Am. ent. Soc. 109, 357–389 (1983).

    Google Scholar 

  11. Greenfield, M. D. Anim. Behav. 36, 684–695 (1988).

    Article  Google Scholar 

  12. Greenfield, M. D. in Biology of the Tettigoniidae (eds Bailey, W. J. & Rentz, D. C.) 71–97 (Springer, Berlin, 1990).

    Book  Google Scholar 

  13. Buck, J. et al. J. comp. Physiol. A144, 277–286 (1981).

    Article  Google Scholar 

  14. Hanson, F. E., Case, J. F., Buck, E. & Buck, J. Science 174, 161–164 (1971).

    ADS  CAS  Article  Google Scholar 

  15. Buck, J., Buck, E., Case, J. F. & Hanson, F. E. J. comp. Physiol. A144, 287–298 (1981).

    Article  Google Scholar 

  16. Sismondo, E. Science 249, 55–58 (1990).

    ADS  CAS  Article  Google Scholar 

  17. Maynard Smith, J. & Price, G. R. Nature 246, 15–18 (1973).

    Article  Google Scholar 

  18. Partridge, B. L. & Krebs, J. R. Anim. Behav. 26, 959–960 (1978).

    Article  Google Scholar 

  19. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).

    Book  Google Scholar 

  20. Burk, T. E. Fla. Ent. 65, 90–104 (1982).

    Article  Google Scholar 

  21. Belwood, J. J. & Morris, G. K. Science 238, 64–67 (1987).

    ADS  CAS  Article  Google Scholar 

  22. Lakes-Harlan, R. & Heller, K.-G. Naturwissenschaften 79, 224–226 (1992).

    ADS  Article  Google Scholar 

  23. Robert, D., Amoroso, J. & Hoy, R. R. Science 258, 1135–1137 (1992).

    ADS  CAS  Article  Google Scholar 

  24. Kirkpatrick, M. & Ryan, M. J. Nature 350, 33–38 (1991).

    ADS  Article  Google Scholar 

  25. Otte, D. & Loftus-Hills, J. Ent. News 90, 159–165 (1979).

    Google Scholar 

  26. Greenfield, M. D. & Shaw, K. C. in Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects (eds Gwynne, D. T. & Morris, G. K.) 1–27 (Westview, Boulder, 1983).

    Google Scholar 

  27. Bailey, W. J. Acoustic Behaviour of Arthropods (Chapman & Hall, London, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greenfield, M., Roizen, I. Katydid synchronous chorusing is an evolutionarily stable outcome of female choice. Nature 364, 618–620 (1993). https://doi.org/10.1038/364618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364618a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing