Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid formation of the Shatsky Rise oceanic plateau inferred from its magnetic anomaly


SHATSKY Rise, in the northwest Pacific Ocean, is probably the oldest extant oceanic plateau, and as with most such features, its origin is uncertain. Both oceanic plateaus and continental flood basalts are thought to be formed by rapid, voluminous eruptions that occur when the 'head' of a newly born mantle plume ascends to the base of the lithosphere1–3. High eruption rates have been estimated for flood basalts (for example, 1.5km3 yr−1 for the Deccan Traps2) from dating of lava flows, but the inaccessibility of oceanic plateaus makes it necessary to extrapolate dating information from a small number of samples and sites4. Here we estimate the eruption rate of Shatsky Rise by a method that is indirect, but has the virtue of 'sampling' the entire volume of the plateau above the surrounding sea floor. The main, southern part of the plateau has a positive magnetic anomaly, corresponding to a reversed geomagnetic polarity at the time of eruption. Using age constraints to identify the longest period of reversed polarity during which the plateau could have formed, we estimate that 2 × 106 km3 of material erupted at a minimum rate of 1.7km3 yr−1. This issomewhat less than the rate of 8–22 km3 yr−1 estimated for the Ontong–Java Plateau4, but still represents a massive eruption, consistent with the plume-head hypothesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Mahoney, J. J. in Seamounts, Islands and Atolls Geophys. Mon. Ser. Vol. 43 (eds Keating, B. H., Fryer, P., Batiza, R. & Boehlert, G. W.) 207–220 (Am. Geophys. Union, Washington DC, 1987).

    Google Scholar 

  2. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Science 246, 103–107 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Duncan, R. A. & Richards, M. A. Rev. Geophys. 29, 31–50 (1991).

    Article  ADS  Google Scholar 

  4. Tarduno, J. A. et al. Science 254, 399–403 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Nakanishi, M., Tamaki, K. & Kobayashi, K. J. geophys. Res. 94, 15437–15462 (1989).

    Article  ADS  Google Scholar 

  6. Larson, R. L. & Chase, C. G. Geol. Soc. Am. Bull. 83, 3627–3644 (1972).

    Article  ADS  Google Scholar 

  7. Hilde, T. W. C., Isezaki, N. & Wageman, J. M. in The Geophysics of the Pacific Ocean Basin and its Margin Geophys. Mon. Ser. Vol. 19 (eds Sutton, G. H., Manghnani, M. & Moberly, R.) 205–226 (Am. Geophys. Union, Washington DC, 1976).

    Google Scholar 

  8. Sager, W. W., Handschumacher, D. W., Hilde, T. W. C. & Bracey, D. R. Tectonophysics 155, 345–364 (1988).

    Article  ADS  Google Scholar 

  9. Larson, R. L. Geology 19, 547–550 (1991).

    Article  ADS  Google Scholar 

  10. Harland, W. B. et al. Geologic Time Scale 140–165 (Cambridge Univ. Press, 1989).

    Google Scholar 

  11. Larson, R. L. & Moberly, R. Init. Rep. DSDP 32, 159–192 (1975).

    CAS  Google Scholar 

  12. Sliter, W. V. & Brown, G. R. Proc. ODP Sci. Res. (in the press).

  13. Toft, P. B. & Arkani-Hamed, J. J. geophys. Res. 97, 4387–4406 (1992).

    Article  ADS  Google Scholar 

  14. Plouff, D. Geophysics 41, 727–741 (1976).

    Article  ADS  Google Scholar 

  15. Harrison, C. G. A., Jarrard, R. D., Vacquier, V. & Larson, R. L. Geophys. J. R. astr. Soc. 42, 859–882 (1975).

    Article  Google Scholar 

  16. McNutt, M. K. J. geophys. Res. 91, 3686–3700 (1986).

    Article  ADS  Google Scholar 

  17. Larson, R. L. & Sager, W. W. Proc. ODP Sci. Res. 129, 471–481 (1992).

    Google Scholar 

  18. Larson, R. L., Steiner, M. B., Erba, E. & Lancelot, Y. Proc. ODP Sci. Res. 129, 615–631 (1992).

    Google Scholar 

  19. Gee, J., Staudigel, H. & Tauxe, L. Nature 342, 170–173 (1989).

    Article  ADS  Google Scholar 

  20. Sandwell, D. S. & MacKenzie, K. R. J. geophys. Res. 94, 7403–7418 (1989).

    Article  ADS  Google Scholar 

  21. Den, N. et al. J. geophys. Res. 74, 1421–1421 (1969).

    Article  ADS  Google Scholar 

  22. Gettrust, J. F., Furukawa, K. & Kroenke, L. W. J. geophys. Res. 85, 5411–5415 (1980).

    Article  ADS  Google Scholar 

  23. Clague, D. A. & Dalrymple, G. B. in Volcanism in Hawaii Vol. 1 (eds Decker, R. W., Wright, T. L. & Stauffer, P. L.) 5–54 (US Govt Printing Office, Washington DC, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sager, W., Han, HC. Rapid formation of the Shatsky Rise oceanic plateau inferred from its magnetic anomaly. Nature 364, 610–613 (1993).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing