Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo

Abstract

AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning1. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells in vitro and by amacrine cells of the developing chick retina in vivo. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain2 may contribute to nerve terminal plasticity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Wallace, S. W. et al. in Long-Term Potentiation: a Debate of Current Issues (eds Baudry, M. & Davis, J. L.) 189–232 (MIT press, Cambridge, MA 1991).

  2. 2

    Oyler, G. A. et al. J. Cell Biol. 109, 3039–3052 (1989).

  3. 3

    Catsicas, S. et al. J. Neurosci. Res. 33, 1–9 (1992).

  4. 4

    Loewy, A. et al. J. Neurosci. 11, 3412–3421 (1991).

  5. 5

    Hess, D. T. et al. J. Neurosci. 12, 4634–4641 (1992).

  6. 6

    Catsicas, S. et al. Proc. nat. Acad. Sci. U.S.A. 88, 785–789 (1991).

  7. 7

    Oyler, G. A. et al. Proc. nat. Acad. Sci. U.S.A. 88, 5247–5251 (1991).

  8. 8

    Oyler, G. A. et al. Dev. Brain Res. 65, 133–146 (1992).

  9. 9

    Bark, C. & Wilson, M. C. Abstr. Soc. Neurosci. 17 531 (1991).

  10. 10

    Alvarez-Bolado, G. et al. Abstr. Soc. Neurosci. 17, 215 (1991).

  11. 11

    Sudhof, T. C. et al. Science 238, 1142–1144 (1987).

  12. 12

    Greene, L. A. & Tischler, A. S. Proc. nat. Acad. Sci. U.S.A. 73, 2424–2428 (1976).

  13. 13

    Sanna, P. P., Bloom, F. E. & Wilson, M. C. Dev Brain Res. 59, 104–108 (1991).

  14. 14

    Gunning, P. W. et al. J. Cell Biol. 89, 240–245 (1981).

  15. 15

    Celio, M. R. Neuroscience 35, 375–475 (1990).

  16. 16

    Ellis, J. H., Richards, D. E. & Rogers, J. H. Cell Tissue Res. 264, 197–208 (1991).

  17. 17

    Masliah, E. et al. J. Histochem. Cytochem. 38, 837–844 (1990).

  18. 18

    Geddes, J. W. et al. Neuroscience 38, 515–525 (1990).

  19. 19

    Hess, E. J. et al. J. Neurosci. 12, 2865–2874 (1992).

  20. 20

    Söllner, T. et al. Nature 362, 318–324 (1993).

  21. 21

    Pfenninger, K. H. et al. in The Growth Cone (eds Letourneau, P. C., Kater, S. B. & Macagno, E. R.) 111–123 (Raven, New York, 1991).

  22. 22

    Baughman, R. W. et al. in Culturing nerve cells (eds Banker, G. & Goslin, K.) 227–249 (MIT Press, Cambridge, MA, 1991).

  23. 23

    Catsicas, S. & Clarke, P. G. H. J. comp. Neurol. 262, 512–522 (1987).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.