Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Primordial black holes in globular clusters

Abstract

IT HAS recently been recognized1 that significant numbers of medium-mass black holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed2 anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red-giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence3 of larger red giants in the cores of some very dense clusters.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Larson, R. B. Mon. Not. R. astr. Soc. 210, 763–777 (1984).

    ADS  Article  Google Scholar 

  2. Bolte, M., Hesser, J. E. & Stetson, P. B. Astrophys. J. 408, L89–L92 (1993).

    ADS  Article  Google Scholar 

  3. Djorgovski, S. G., Piotto, G., Phinney, E. S. & Chernoff, D. F. Astrophys. J. 372, L41–L44 (1991).

    ADS  Article  Google Scholar 

  4. Woosley, S. E. & Weaver, T. A. A. Rev. Astr. Astrophys. 24, 205–253 (1986).

    ADS  CAS  Article  Google Scholar 

  5. Maeder, A. Astr. Astrophys. 264, 105–120 (1992).

    ADS  Google Scholar 

  6. Kulkarni, S. R., Hut, P. & McMillan, S. Nature 364, 421–423 (1993).

    ADS  Article  Google Scholar 

  7. Phinney, E. S. Phil. Trans. R. Soc. A341, 39–76 (1992).

    ADS  Google Scholar 

  8. Grindlay, J. E. & Bailyn, C. D. Nature 336, 48–50 (1988).

    ADS  Article  Google Scholar 

  9. Kulkarni, S. R. Phil. Trans. R. Soc. A341, 77–92 (1992).

    ADS  Google Scholar 

  10. Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    ADS  Article  Google Scholar 

  11. Hut, P. & Bahcall, J. Astrophys. J. 268, 319–341 (1983).

    ADS  Article  Google Scholar 

  12. Sigurdsson, S. & Phinney, E. S. Astrophys. J. (in the press).

  13. Phinney, E. S. in Dynamics of Globular Clusters (eds Djorgovski, S. G. & Meylan, G.) 141–169 (PASP, San Francisco, 1993).

    Google Scholar 

  14. Trager, S. C., Djorgovski, S. G. & King, I. R. in Dynamics of Globular Clusters (eds Djorgovski, S. G. & Meylan, G.) 347–355 (PASP, San Francisco, 1993).

    Google Scholar 

  15. Wiseman, A. G. Phys. Rev. D46, 1517–1539 (1992).

    ADS  CAS  Article  Google Scholar 

  16. Thorne, K. S. in 300 Years of Gravitation (eds Hawking, S. W. & Israel, W.) 330–458 (Cambridge Univ. Press, 1987).

    Google Scholar 

  17. Hut, P. & Rees, M. J. Mon. Not. R. astr. Soc. 259, 27P–30P (1992).

    ADS  Article  Google Scholar 

  18. Grindlay, J. E., Hertz, P., Steiner, J. E., Murray, S. S. & Lightman, A. P. Astrophys. J. 282, L13–L16 (1984).

    ADS  Article  Google Scholar 

  19. Gerhard, O. E. & Binney, J. Mon. Not. R. astr. Soc. 216, 467–502 (1985).

    ADS  Article  Google Scholar 

  20. Gunn, J. E. & Griffin, R. F. Astr. J. 84, 752–773 (1979).

    ADS  Article  Google Scholar 

  21. Grabhorn, R. P., Cohn, H. N., Lugger, P. M. & Murphy, B. W. Astrophys. J. 392, 86–98 (1992).

    ADS  Article  Google Scholar 

  22. Lauer, T. R. et al. Astrophys. J. 369, L45–L49 (1991).

    ADS  Article  Google Scholar 

  23. Shapiro, S. L. in Dynamics of Star Clusters (eds Goodman, J. & Hut, P.) 373–413 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  24. Hut, P., McMillan, S. & Romani, R. W. Astrophys. J. 389, 527–545 (1992).

    ADS  Article  Google Scholar 

  25. Leonard, P. J. T. Astr. J. 98, 217–226 (1989).

    ADS  Article  Google Scholar 

  26. Phinney, E. S. & Sigurdsson, S. Nature 349, 220–223 (1991).

    ADS  Article  Google Scholar 

  27. Hills, J. G. Astr. J. 102, 704–715 (1991).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sigurdsson, S., Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993). https://doi.org/10.1038/364423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364423a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing