Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterization of a functionally important mobile domain of GroES

Abstract

ALTHOUGH genetic1 and biochemical2,3 evidence has established that GroES is required for the full function of the molecular chaperone, GroEL, little is known about the molecular details of their interaction. GroES enhances the cooperativity of ATP binding and hydrolysis by GroEL (refs 4, 5) and is necessary for release and folding of several GroEL substrates6. Here we report that native GroES has a highly mobile and accessible polypeptide loop whose mobility and accessibility are lost upon formation of the GroES/GroEL complex. In addition, lesions present in eight independently isolated mutant groES alleles map in the mobile loop. Studies with synthetic peptides suggest that the loop binds in a hairpin conformation at a site on GroEL that is distinct from the substrate-binding site. Flexibility may be required in the mobile loops on the GroES seven-mer to allow them to bind simultaneously to sites on seven GroEL subunits, which may themselves be able to adopt different arrangements, and thus to modulate allosterically GroEL/substrate affinity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Tilly, K. & Georgopoulos, C. J. Bact. 149, 1082–1088 (1982).

    CAS  PubMed  Google Scholar 

  2. Chandrasekhar, G. N. et al. J. biol. Chem. 261, 12414–12419 (1986).

    CAS  PubMed  Google Scholar 

  3. Goloubinoff, P. et al. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Gray, T. E. & Fersht, A. R. FEBS Lett. 292, 254–258 (1991).

    Article  CAS  Google Scholar 

  5. Bochkareva, E. S. et al. J. biol. Chem. 267, 6796–6800 (1992).

    CAS  PubMed  Google Scholar 

  6. Jaenicke, R. Curr. Opin. struct. Biol. 3, 104–112 (1993).

    Article  CAS  Google Scholar 

  7. Wuthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  8. Wishart, D. S., Sykes, B. D. & Richards, F. M. J. molec. Biol. 222, 311–333 (1991).

    Article  CAS  Google Scholar 

  9. Georgopoulos, C. P. et al. J. molec. Biol. 76, 45–60 (1973).

    Article  CAS  Google Scholar 

  10. Landry, S. J. & Gierasch, L. M. Biochemistry 30, 7359–7362 (1991).

    Article  CAS  Google Scholar 

  11. Landry, S. J. et al. Nature 355, 455–457 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Langer, T. et al. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  13. Hartman, D. J. et al. Proc. natn. Acad. Sci. U.S.A. 89, 3394–3398 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Lubben, T. H. et al. Proc. natn. Acad. Sci. U.S.A. 87, 7683–7687 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Bertsch, U. et al. Proc. natn. Acad. Sci. U.S.A. 89, 8696–8700 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Ohtaka, C., Nakamura, H. & Ishikawa, H. J. Bact. 174, 1869–1874 (1992).

    Article  CAS  Google Scholar 

  17. Martin, J. et al. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Creighton, T. E. Nature 352, 17–18 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Mendoza, J. A. et al. J. biol. Chem. 266, 13044–13049 (1991).

    CAS  PubMed  Google Scholar 

  20. Nilsson, B & Anderson, S. A. Rev. Microbiol. 45, 607–635 (1991).

    Article  CAS  Google Scholar 

  21. Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Schagger, H. & von Jagow, G. Analyt. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

  23. Marion, D., Ikura, M. & Bax, A. J. magn. Reson. 84, 425–430 (1989).

    ADS  CAS  Google Scholar 

  24. Braig, K. et al. Proc. natn. Acad. Sci. U.S.A. 90, 3978–3982 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Landry, S., Zeilstra-Ryalls, J., Fayet, O. et al. Characterization of a functionally important mobile domain of GroES. Nature 364, 255–258 (1993). https://doi.org/10.1038/364255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing