Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective neuroanatomical plasticity and division of labour in the honeybee

Abstract

THE mushroom bodies in the protocerebrum are believed to be the structures of the insect brain most closely associated with higher-order sensory integration and learning1. Drosophila melanogaster mutants with olfactory learning deficits have anatomically abnormal mushroom bodies or altered patterns of gene expression in mushroom body neurons2–4. In addition, anatomical reorganization of the mushroom bodies occurs in adult flies5, and possibly in adult honeybees6,7; disturbance of electrical activity in this region disrupts memory formation in honeybees8. Little is known, however, about the relationship of naturally occurring anatomical changes in the mushroom bodies to naturally occurring behavioural plasticity. We now report that age-based division of labour in adult worker honeybees (Apis mellifera) is associated with substantial changes in certain brain regions, notably the mushroom bodies. Moreover, these striking changes in brain structure are dependent, not on the age of the bee, but on its foraging experience, thus demonstrating a robust anatomical plasticity associated with complex behaviour in an adult insect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Erber, J., Homberg, U. & Gronenberg, W. in Arthropod Brain: Its Evolution. Development, Structure and Functions (ed. Gupta, A. P.) 484–512 (Wiley, New York, 1987).

    Google Scholar 

  2. Heisenberg, M., Borst, A., Wagner, S. & Byers, D. J. Neurogenet. 2, 1–30 (1985).

    Article  CAS  Google Scholar 

  3. Nighorn, A., Healey, M. J. & Davis R. L. Neuron 6, 455–467 (1991).

    Article  CAS  Google Scholar 

  4. Han, P-L, Levin, L. R., Reed, R. R. & Davis, R. L. Neuron 9, 619–627 (1992).

    Article  CAS  Google Scholar 

  5. Technau, G. M. J. Neurogenet. 1, 113–126 (1984).

    Article  CAS  Google Scholar 

  6. Brandon, J. & Coss, R. Brain Res. 252, 51–61 (1982).

    Article  CAS  Google Scholar 

  7. Coss, R., Brandon, J. & Globus, A. Brain Res. 192, 49–59 (1980).

    Article  CAS  Google Scholar 

  8. Erber, J., Masuhr, T. & Menzel, R. Physiol. Ent. 5, 343–358 (1980).

    Article  Google Scholar 

  9. Winston, M. L. The Biology of the Honey Bee, 89–110 (Harvard Univ. Press, Cambridge, 1987).

    Google Scholar 

  10. Robinson, G. E. A. Rev. Ent. 37, 637–665 (1992).

    Article  CAS  Google Scholar 

  11. Gundersen, H. J. G. et al. Acta path. microbiol. Immun. scand. 96, 379–394 (1988).

    Article  CAS  Google Scholar 

  12. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. Proc. natn. Acad. Sci. U.S.A. 87, 5568–5572 (1990)

    Article  ADS  CAS  Google Scholar 

  13. DeVoogd, R. J., Nixdorf, B. & Nottebohm, F. Brain Res. 329, 304–308 (1985).

    Article  CAS  Google Scholar 

  14. Turner, A. M. & Greenough, W. T. Brain Res. 329, 195–203 (1985).

    Article  CAS  Google Scholar 

  15. Mobbs, P. G. Phil. Trans. R. Soc. Lond. B298, 309–354 (1982).

    Article  Google Scholar 

  16. Robinson, G. E., Page Jr, R. E., Strambi, C. & Strambi, A. Science, 246, 109–112 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Huang, Z.-Y. & Robinson, G. E. Proc. natn. Acad. Sci. U.S.A. 89, 11726–11729 (1993).

    Article  ADS  Google Scholar 

  18. Menzel, R. in Neurobiology of Comparative Cognition (eds Kesner, R. P. & Olton, D. S.) 237–292 (Lawrence Erlbaum Associates, Hillsdale, 1990).

    Google Scholar 

  19. Gould, J. L. A. Rev. Psychol. 37, 163–192 (1986).

    Article  CAS  Google Scholar 

  20. von Frisch, K. The Dance Language and Orientation of Bees (Belknap/Harvard Univ. Press, Cambridge, 1967).

    Google Scholar 

  21. Mobbs, P. G. J. Insect Physiol. 30, 43–58 (1984).

    Article  ADS  Google Scholar 

  22. Ramony Cajal, S. Proc. R. Soc. Lond. 55, 444–468 (1894).

    Article  Google Scholar 

  23. Tanzi, E. Riv. sper. Freniat. Med. leg. Alien, ment., 19, 419–472 (1893).

    Google Scholar 

  24. Kenyon, F. C. J. comp. Neurol. 6, 133–210 (1896).

    Article  Google Scholar 

  25. SAS Institute SAS Users Guide: Statistics Version 5 (SAS Institute, Cary, 1985).

  26. Michel, R. P. & Cruz-Orive, L. M. J. Microsc. 150, 117–136 (1988).

    Article  CAS  Google Scholar 

  27. Laidlaw, H.H. Instrumental Insemination of Honey Bee Queens (Dadant, Hamilton, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withers, G., Fahrbach, S. & Robinson, G. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364, 238–240 (1993). https://doi.org/10.1038/364238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364238a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing