Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possibility of chemical weathering before the advent of vascular land plants

Abstract

CHEMICAL weathering today is generally assumed to occur primarily in soils1,2. The rise of vascular plants during the Silurian and Devonian periods about 400 Myr ago brought about an increase in soil microbial activity and thus in soil CO2 generation, and it has therefore been widely believed that, as a result of these changes, soil CO2 replaced atmospheric CO2 as the primary agent of chemical weathering3–6. Here we show that the aerated region above the water table (the vadose zone) exerts a strong influence on the CO2 concentration to which runoff is exposed as it percolates beneath the soil, and we argue that this could have been the case before the Silurian. We present calculations which show that, for present-day atmospheric CO2 concentrations, a low level of microbial respiration may be sufficient to support appreciable CO2 concentrations in the vadose zone because of the slow rate of CO2 loss to the surface. Despite the small amount of microbial respiration in pre-Silurian soils, CO2 concentrations in subsoil vadose zones might therefore have been sufficient to account for the apparent constancy of chemical weathering since the mid-Proterozoic7, obviating the need to invoke high levels of atmospheric CO2 to explain the weathering record.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nahon, D. B. Introduction to the Petrology of Soils and Chemical Weathering (Wiley, 1991).

    Google Scholar 

  2. Drever, J. I. The Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs, 1988).

    Google Scholar 

  3. Cawley, J. L. Burruss, R. C. & Holland, H. D. Science 165, 391–392 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Holland, H. D., Lazar, B. & McCaffrey, M. Nature 320, 27–33 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Berner, R. A. Science 249, 1382–1386 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Berner, R. A. Am J. Sci 291, 339–376 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

    Google Scholar 

  8. Wood B. D. Keller, C. K. & Johnstone, D. L. Water Resources Res. 29, 647–659 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Severson, K. J., Johnstone, D. L., Keller, C. K. & Wood, B. D., Geomicrobiol J. 9, 197–216 (1992).

    Article  Google Scholar 

  10. Kunkler, J. L. U.S. Geol. Surv. Prof. Pap. 650-B, 185–188 (1969).

  11. Reardon, E. J., Allison, G. B. & Fritz, P. J. Hydrol. 43, 355–371 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Haas, H., Fisher, D. W., Thorstenson, D. C. & Weeks, E. P. Radiocarbon 25, 301–314 (1983).

    Article  CAS  Google Scholar 

  13. Thorstenson, D. C., Weeks, E. P., Haas, H. & Fisher, D. W. Radiocarbon 25, 315–346 (1983).

    Article  CAS  Google Scholar 

  14. Wood, W. W. & Petraitis, M. J. Water Resources Res. 20, 1193–1208 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Keller, C. K. & Hendry, M. J. Eos 69, 1178–1179 (1988).

    Google Scholar 

  16. Hiebert, F. K. & Bennett, P. C. Science 258, 278–281 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Antweiler, R. C. & Drever, J. I. Geochim. cosmochim. Acta 47, 623–629 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Holland, H. D. & Zbinden, E. A. in Physical and Chemical Weathering in Geochemical Cycles (eds Lerman, A. & Meybeck, M.) 61–82 (Kluwer, The Netherlands, 1988).

    Book  Google Scholar 

  19. Schopf, J.W. Biol. Rev. 45, 319–352 (1970).

    Article  Google Scholar 

  20. Golubic, S. & Campbell, S. E. Precambr Res. 8, 201–217 (1979).

    Article  ADS  Google Scholar 

  21. Beerbower, R. in Geological Factors and the Evolution of Plants (ed. Tiffney, B. H.), 47–91 (Yale Univ. Press, 1985).

    Google Scholar 

  22. Thurman, E. M. Organic Geochemistry of Natural Waters (Martinus Nijhoff, The Netherlands, 1985).

    Book  Google Scholar 

  23. Keller, C. K. Water Resources Res. 27, 2555–2564 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Schwartzman, D. W. & Volk, T. Nature 340, 457–460 (1989).

    Article  ADS  Google Scholar 

  25. Murphy, E. M., Davis, S. N., Long, A., Donahue, D. & Timothy Jull, A. J. Water Resources Res. 25, 1893–1905 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Ghiorse, W. C. & Wilson, J.T. Adv. appl. Microbiol. 33, 107–172 (Academic, New York, 1988).

    Article  CAS  Google Scholar 

  27. Cerling, T. E., Earth planet. Sci. Lett. 71, 229–240 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Hillel, D. Fundamentals of Soil Physics (Academic, 1980).

    Google Scholar 

  29. Campbell, G. S. Soil Physics with BASIC: Transport Models for Soil-Plant Systems (Elsevier, 1985).

    Google Scholar 

  30. Millington, R. J. & Quirk, J.P. Trans. Faraday Soc. 57, 1200–1207 (1961).

    Article  CAS  Google Scholar 

  31. Schlesinger, W. H. Biogeochemistry: an Analysis of Global Change (Academic, New York, 1991).

    Google Scholar 

  32. Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).

    Google Scholar 

  33. Johnson, C. G. & Vestal, J.R. Appl. Envir. Microbiol. 57, 2308–2311 (1991).

    Google Scholar 

  34. Knauth, P. L. Geol. Soc. Am. Abstr. Prog. 24, A99 (1992).

    Google Scholar 

  35. White, C. E., Hem, J. D. & Waring, G. A., in Data of Geochemistry 6th Edn (ed. Fleischer, M.) (U.S. Geol. Surv. Prof. Pap. 440-F, 1963).

    Google Scholar 

  36. Harmon, R. S., White, W. B., Drake, J. J. & Hess, J. W. Water Resources Res. 11, 963–967 (1975).

    Article  ADS  CAS  Google Scholar 

  37. April, R., Newton, R. & Coles, L. T. Geol. Soc. Am. Bull. 97, 1232–1238 (1986).

    Article  ADS  CAS  Google Scholar 

  38. Keller, C. K., van der Kamp, G. & Cherry, J. A. Water Resources Res. 27, 2543–2554 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Mora, C. I., Dreise, S. G. & Seager, P. G. Geology 19, 1017–1020 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Cerling, T. E. Am. J. Sci. 291, 377–400 (1991).

    Article  ADS  CAS  Google Scholar 

  41. Yapp, C. J. & Poths, H. Nature 355, 342–344 (1992).

    Article  ADS  CAS  Google Scholar 

  42. Cochran, M. F. & Berner, R. A. in Water-Rock Interaction 7 (eds Kharaka, Y. K. & Maest, A. S.) 473–476 (Balkema, Rotterdam, 1992).

    Google Scholar 

  43. Hendry, M. J., Lawrence, J. R., Zanyk, B. N., & Kirkland, R. Water Resources Res. 29, 973–984 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, C., Wood, B. Possibility of chemical weathering before the advent of vascular land plants. Nature 364, 223–225 (1993). https://doi.org/10.1038/364223a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364223a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing