Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein

Abstract

THE cold-shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature. It leads to the increased production of the major cold-shock proteins, CS7.4 and CspB, respectively1–3. CS7.4 is a transcriptional activator of two genes4,5. CS7.4 and CspB share 43 per cent sequence identity with the nucleic acid-binding domain of the eukaryotic gene-regulatory Y-box factors6. This cold-shock domain is conserved from bacteria to man7 and contains the RNA-binding RNP1 sequence motif8. As a prototype of the cold-shock domain, the structure of CspB has been determined here from two crystal forms. In both, CspB is present as an antiparallel five-stranded β-barrel. Three consecutive β-strands, the central one containing the RNP1 motif, create a surface rich in aromatic and basic residues that are presumably involved in nucleic acid binding. Preferential binding of CspB to single-stranded DNA is observed in gel retardation experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jones, P. G., VanBogelen, R. A. & Neidhardt, F. C. J. Bact. 169, 2092–2095 (1987).

    Article  CAS  Google Scholar 

  2. Goldstein, J., Pollitt, N. S. & Inouye, M. Proc. natn. Acad. Sci. U.S.A. 87, 283–287 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Willimsky, G., Bang, H., Fischer, G. & Marahiel, M. A. J. Bact. 174, 6326–6335 (1992).

    Article  CAS  Google Scholar 

  4. La Teana, A. et al. Proc. natn. Acad. Sci. U.SA. 88, 10907–10911 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Jones, P. G., Krah, R., Tafuri, S. A. & Wolffe, A. P., J. Bact. 174, 5798–5802 (1992).

    Article  CAS  Google Scholar 

  6. Wistow, G. Nature 344, 823–824 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Wolffe, A. P., Tafuri, S., Ranjan, M. & Familari, M. New Biol. 4, 290–298 (1992).

    CAS  PubMed  Google Scholar 

  8. Landsman, D. Nucleic Acids Res. 20, 2861–2864 (1992).

    Article  CAS  Google Scholar 

  9. Richardson, J. S. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  10. Schnuchel, A. et al. Nature (this issue).

  11. Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. Nature 348, 515–520 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Crawford, D. R. & Richter, J. D. Development 101, 741–749 (1987).

    CAS  PubMed  Google Scholar 

  13. Murray, M. T., Krohne, G. & Franke, W. W. J. Cell Blol. 112, 1–11 (1991).

    Article  CAS  Google Scholar 

  14. Murzin, A. G. EMBO J. 12, 861–867 (1993).

    Article  CAS  Google Scholar 

  15. Hynes, T. R. & Fox, R. O. Proteins: Struct. Funct. Genet. 10, 92–105 (1991).

    Article  CAS  Google Scholar 

  16. Brayer, G. D. & McPherson, A. J. molec. Biol. 169, 565–596 (1983).

    Article  CAS  Google Scholar 

  17. Folkers, P. J. M. et al. Eur. J. Biochem. 202, 349–360 (1991).

    Article  CAS  Google Scholar 

  18. Merrill, B. M., Stone, K. L., Cobianchi, F., Wilson, S. H. & Williams, K. R. J. biol. Chem. 263, 3307–3313 (1988).

    CAS  PubMed  Google Scholar 

  19. Brennan, C. A. & Platt, T. J. biol. Chem. 266, 17296–17305 (1991).

    CAS  PubMed  Google Scholar 

  20. Schindelin, H., Herrler, M., Willimsky, G., Marahiel, M. A. & Heinemann, U. Proteins Struct. Funct. Genet. 14, 120–124 (1992).

    Article  CAS  Google Scholar 

  21. CCP4 (The SERC Collaborative Computing Project No. 4, SERC Daresbury Laboratory. Warrington, UK, 1979).

  22. Sheidrick, G. M. in Crystallographic Computing (eds Sheldrick, G. M., Krüger, C. & Goddard, R.) 175–189 (Oxford Univ. Press. Oxford, UK, 1985).

    Google Scholar 

  23. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  24. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  25. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  26. Read, R. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  27. Kraulis, J. P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  29. Fried, M. & Crothers, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  30. Merril, C. R., Goldman, D., Sedman, S. A. & Ebert, M. H. Science 211, 1437–1438 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindelin, H., Marahiel, M. & Heinemann, U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 164–168 (1993). https://doi.org/10.1038/364164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364164a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing