Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The displacement field of the Landers earthquake mapped by radar interferometry

Abstract

GEODETIC data, obtained by ground- or space-based techniques, can be used to infer the distribution of slip on a fault that has ruptured in an earthquake. Although most geodetic techniques require a surveyed network to be in place before the earthquake1–3, satellite images, when collected at regular intervals, can capture co-seismic displacements without advance knowledge of the earthquake's location. Synthetic aperture radar (SAR) interferometry, first introduced4 in 1974 for topographic mapping5–8 can also be used to detect changes in the ground surface, by removing the signal from the topography9,10. Here we use SAR interferometry to capture the movements produced by the 1992 earthquake in Landers, California11. We construct an interferogram by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake. The observed changes in range from the ground surface to the satellite agree well with the slip measured in the field, with the displacements measured by surveying, and with the results of an elastic dislocation model. As a geodetic tool, the SAR interferogram provides a denser spatial sampling (100 m per pixel) than surveying methods1–3 and a better precision (3 cm) than previous space imaging techniques12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blewitt, G. et al. Nature 361, 340–342 (1993).

    Article  ADS  Google Scholar 

  2. Bock, Y. et al. Nature 361, 337–340 (1993).

    Article  ADS  Google Scholar 

  3. Murray, M. H., Savage, J. C., Lisowski, M. & Gross, W. K. Geophys. Res. Lett. 20, 623–626 (1993).

    Article  ADS  Google Scholar 

  4. Graham, L. C. Proc. Inst. elect. electron. Engrs 62, 763–768 (1974).

    Article  Google Scholar 

  5. Zebker, H. & Goldstein, R. J. geophys. Res. 91, 4993–5001 (1986).

    Article  ADS  Google Scholar 

  6. Gabriel, A. K. & Goldstein, R. M. Int. J. Remote Sensing 9, 857–872 (1988).

    Article  ADS  Google Scholar 

  7. Li, F. K. & Goldstein, R. M. IEEE Trans. Geosci. Remote Sensing 28, 88–97 (1990).

    Article  ADS  Google Scholar 

  8. Massonnet, D. Proc. int. Geophys. appl. Remote Sensing Symp. 2, 1431–1434 (1990).

    Google Scholar 

  9. Massonnet, O. Etude de Principe d'une Détection de Mouvements Tectoniques par Radar Internal memo No. 326 (Centre Nationale d'Etudes Spatiales, Toulouse, 1985).

    Google Scholar 

  10. Gabriel, A. K., Goldstein, R. M. & Zebker, H. A. J. geophys. Res. 94, 9183–9191 (1989).

    Article  ADS  Google Scholar 

  11. Sieh, K. et al. Science 260, 171–176 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Crippen, R. E. Episodes 15, 56–61 (1992).

    Google Scholar 

  13. Crippen, R. E. & Blom, R. G. Eos (Supplement, 27 Oct.) 73, 364 (1992).

    Google Scholar 

  14. Kanamori, H., Thio, H.-K., Dreger, D. & Hauksson, E. Geophys. Res. Lett. 19, 2267–2270 (1992).

    Article  ADS  Google Scholar 

  15. Okada, Y. Bull. seism. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  16. Shen, Z. Jackson, D., Feng, Y., Kim, M. & Cline, M. Bull. seism. Soc. Am. (submitted).

  17. Jaumé, S. C. & Sykes, L. R. Science 258, 1325–1328 (1992).

    Article  ADS  Google Scholar 

  18. Stein, R. S., King, G. L. P. & Lin, J. Science 258, 1328–1332 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Hill, D. P. et al. Science 260, 1617–1623 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Massonnet, D. & Rabaute, T. IEEE Trans. Geosci. Remote Sensing 31, 455–464 (1993).

    Article  ADS  Google Scholar 

  21. Massonnet, D., Rossi, M. & Adragna, F. Paper presented at PRISME, CEOS workshop on SAR calibration, Oberpfaffenhofen, Germany, October 9–11 (1991).

  22. Elassal, A. A. & Caruso, V. M. USGS Digital Cartographic Data Standards: Digital Elevation Models (National Cartographic Information Center, Reston, 1984).

    Google Scholar 

  23. Zebker, H. A. & Villasenor, J. IEEE Trans. Geosci. Remote Sensing 30, 950–959 (1992).

    Article  ADS  Google Scholar 

  24. Cafforio, C., Prati, C. & Rocca, F. IEEE Trans. aero. Elect. Syst. 27, 194–207 (1991).

    Article  ADS  Google Scholar 

  25. FRINGE SAR Interferometry Working Group, Proceedings of First Workshop, 12 Oct, 1992, Frascati, Italy (1992).

  26. Gray, A. L. & Farris-Manning, P. J. IEEE Trans. Geosci. Remote Sensing 31, 180–191 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massonnet, D., Rossi, M., Carmona, C. et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993). https://doi.org/10.1038/364138a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364138a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing