Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional dissection of TFIIB domains required for TFIIB–TFIID–promoter complex formation and basal transcription activity

Abstract

THE protein TFIIB is a general transcription initiation factor1 that interacts with a promoter complex (D·DNA) containing the TATA-binding subunit (TFIIDτ, or TBP) of TFIID to facilitate subsequent interaction with RNA polymerase II (ref. 2) through the associated TFIIF (ref. 3). The potential bridging function2,4 of TFIIB raises the possibility of two structural domains and emphasizes the importance of TFIIB structure–function studies for a further understanding of preinitiation complex assembly and function1. Here we show that human TFIIB (refs 5,6) is comprised of functionally distinct N- and C-terminal domains. The C-terminal domain, containing the direct repeats and associated basic regions, is necessary and sufficient for interaction with the D·DNA complex. By contrast, the N-terminal domain that is dispensable for formation of the TFIIDτ–TFIIB–promoter (D·B·DNA) complex is required for subsequent events leading to basal transcription initiation. On the basis of these results, we discuss structural and functional similarities between TFIIB and TFIIDτ, which have similar structural organization and motifs5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roeder, R. G. Trends biochem. Sci. 16, 402–408 (1991).

    Article  CAS  Google Scholar 

  2. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  3. Flores, O. et al. Pro. natn. Acad. Sci. U.S.A. 88, 9999–10003 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Pinto, I., Ware, D. E. & Hampsey, M. Cell 68, 977–988 (1992).

    Article  CAS  Google Scholar 

  5. Malik, S., Hisatake, K., Sumimoto, H., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 88, 9553–9557 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Ha, I., Lane, S. & Reinberg, D. Nature 352, 689–695 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Maldonado, E., Ha, I., Cortes, P., Weiss, L. & Reinberg, D. Molec. cell. Biol. 10, 6335–6347 (1990).

    Article  CAS  Google Scholar 

  8. Cortes, P., Flores, O. & Reinberg, D. Molec. cell. Biol. 12, 413–421 (1992).

    Article  CAS  Google Scholar 

  9. Yamashita, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2839–2843 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Hisatake, K., Malik, S., Roeder, R. G. & Horikoshi, M. Nucleic Acids Res. 19, 6639 (1991).

    Article  CAS  Google Scholar 

  11. Colbert, T. & Hahn, S. Genes Dev. 6, 1940–1949 (1992).

    Article  CAS  Google Scholar 

  12. Allfredo, L., Librizzi, M., Puglia, K. & Willis, I. M. Cell 71, 211–220 (1992).

    Article  Google Scholar 

  13. Buratowski, S. & Zhou, H. Cell 71, 221–230 (1992).

    Article  CAS  Google Scholar 

  14. Yano, R. & Nomura, M. Molec. cell. Biol. 11, 754–764 (1991).

    Article  CAS  Google Scholar 

  15. Werner, M., Denmat, S. H.-L., Treich, I., Sentenac, A. & Thuriaux, P. Molec. cell. Biol. 12, 1087–1095 (1992).

    Article  CAS  Google Scholar 

  16. Horikoshi, M., Yamamoto, T., Ohkuma, Y., Weil, P. A. & Roeder, R. G. Cell 61, 1171–1178 (1990).

    Article  CAS  Google Scholar 

  17. Reddy, P. & Hahn, S. Cell 65, 349–357 (1991).

    Article  CAS  Google Scholar 

  18. Yamamoto, T. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2844–2848 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Nikolov, D. B. et al. Nature 360, 40–46 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Hoffmann, A. et al. Nature 346, 387–390 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Lewin, B. Cell 61, 1161–1164 (1990).

    Article  CAS  Google Scholar 

  22. Greenblatt, J. Cell 66, 1067–1070 (1991).

    Article  CAS  Google Scholar 

  23. Wampler, S. L. & Kadonaga, J. T. Genes Dev. 6, 1542–1552 (1992).

    Article  CAS  Google Scholar 

  24. Horikoshi, M. et al. Proc. natn. Acad. Sci. U.S.A. 89, 1060–1064 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  26. Kunkel, T. A., Roberts, L. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  27. Hoffmann, A. & Roeder, R. G. Nucleic Acids Res. 19, 6337–6338 (1991).

    Article  CAS  Google Scholar 

  28. Hai, T., Horikoshi, M., Roeder, R. G. & Green, M. R. Cell 54, 1043–1051 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisatake, K., Roeder, R. & Horikoshi, M. Functional dissection of TFIIB domains required for TFIIB–TFIID–promoter complex formation and basal transcription activity. Nature 363, 744–747 (1993). https://doi.org/10.1038/363744a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363744a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing