Abstract
VERTEBRATES and invertebrates both have GABA (γ-aminobutyric acid) as a major inhibitory neurotransmitter1,2. GABAA receptors in vertebrates assemble as heteromultimers to form an integral chloride ion channel3. These receptors are targets for drugs and pesticides4 and are also implicated in seizure-related diseases5,6. Picrotoxinin (PTX) and cyclodiene insecticides are GABAA receptor antagonists which competitively displace each other from the same binding site7. Insects8 and vertebrates9 showing resistance to cyclodienes also show cross-resistance to PTX. Previously, we used a field-isolated Drosophila mutant Rdl (Resistant to dieldrin)10 insensitive to PTX and cyclodienes to clone a putative GABA receptor11. Here we report the functional expression and novel pharmacology of this GABA receptor and examine the functionality of a resistance-associated point mutation (alanine to serine) within the second membrane-spanning domain, the region thought to line the chloride ion channel pore. This substitution is found globally in Drosophila populations12. This mutation not only identifies a single amino acid conferring high levels of resist-ance to the important GABA receptor antagonist PTX but also, by conferring resistance to cyclodienes, may account for over 60% of reported cases of insecticide resistance13.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Kuffler, S. W. & Edwards, C. J. Neurophysiol. 21, 589–601 (1965).
- 2
Usherwood, P. N. R. & Grundfest, H. J. Neurophysiol. 28, 497–518 (1965).
- 3
Olsen, R. W. & Tobin, A. J. FASEB J. 4, 1469–1480 (1990).
- 4
Eldefrawi, A. T. & Eldefrawi, M. E. FASEB J. 1, 262–271 (1987).
- 5
Meldrum, B. S. Br. J. clin. Pharmacol. 27, 3S–11S (1989).
- 6
Wagstaff, J. et al. Am. J. hum. Genet 49, 330–337 (1991).
- 7
Matsumura, F. & Ghiasuddin, S. M. J. environ. Sci. Hlth B18, 1–14 (1983).
- 8
Kadous, A. A., Ghiasuddin, S. M., Matsumura, F., Scott, J. G. & Tanaka, K. Pestic. Biochem. Physiol. 19, 157–166 (1983).
- 9
Yarbrough, J. D., Roush, R. T., Bonner, J. C. & Wise, D. A. Experientia 42, 851–853 (1986).
- 10
ffrench-Constant, R. H., Roush, R. T., Mortlock, D. & Dively, G. P. J. Ecol. Ent. 83, 1733–1737 (1990).
- 11
ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., Maclntyre, R. J. & Roush, R. T. Proc. natn. Acad. Sci. U.S.A. 88, 7209–7213 (1991).
- 12
ffrench-Constant R. H., Steichen, J., Rocheleau, T. A., Aronstin, K. & Roush, R. T. Proc. natn. Acad. Sci. U.S.A. (in the press).
- 13
Georghiou, G. P. in Pesticide Resistance: Strategies and Tactics for Management 14–43 (National Academy Press, Washington DC, 1986).
- 14
Imoto, K. et al. Nature 335, 645–648 (1988).
- 15
Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N. & Lester, H. A. Science 242, 1578–1581 (1988).
- 16
Blair, L. A., Levitan, E. S., Marshall, J., Dionne, V. E. & Barnard, E. A. Science 242, 577–579 (1988).
- 17
Lummis, S. C. Comp. Biochem. Physiol. 95, 1–8 (1990).
- 18
Feigenspan, A., Wassle, H. & Bormann, J. Nature 361, 159–161 (1993).
- 19
Qian, H. & Dowling, J. E. Nature 361, 162–164 (1993).
- 20
Shimada, S., Cutting, G. & Uhl, G. R. Molec. Pharmac. 41, 683–687 (1992).
- 21
ffrench-Constant, R. H. & Rocheleau, T. J. Neurochem. 59, 1562–1565 (1992).
- 22
Harvey, R. J. et al. EMBO J. 10, 3239–3245 (1991).
- 23
Bloomquist, J. R., ffrench-Constant, R. H. & Roush, R. T. Pestic. Sci. 32, 463–469 (1991).
- 24
ffrench-Constant, R. H. & Roush, R. T. Genet. Res. Camb. 57, 17–21 (1991).
- 25
Pribilla, I., Takagi, T., Langosch, D., Bormann, J. & Betz, H. EMBO J. 11, 4305–4311 (1992).
- 26
Roush, R. T. & McKenzie, J. A. A. Rev. Ent. 32, 361–380 (1987).
- 27
Noda, M. et al. Nature 299, 793–797 (1982).
- 28
Satelle, D. B. et al. in Transmitter Amino Acid Receptors, Structures, Transduction and Models for Drug Development (eds Barnard, E. A. & Costa, E.) 273–291 (Thieme Medical, New York, 1992).
- 29
Schofield, P. R. et al. Nature 328, 221–227 (1987).
- 30
Pritchett, D. B. et al. Nature 338, 582–585 (1989).
- 31
Shivers, B. D. et al. Neuron 3, 327–337 (1989).
- 32
Cutting, G. R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 2673–2677 (1991).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
ffrench-Constant, R., Rocheleau, T., Steichen, J. et al. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 449–451 (1993). https://doi.org/10.1038/363449a0
Received:
Accepted:
Issue Date:
Further reading
-
Distinct roles of two RDL GABA receptors in fipronil action in the diamondback moth ( Plutella xylostella )
Insect Science (2021)
-
Identification of the Functional Binding Site for the Convulsant Tetramethylenedisulfotetramine in the Pore of the α2β3γ2 GABAA Receptor
Molecular Pharmacology (2021)
-
The molecular targets of ivermectin and lotilaner in the human louse Pediculus humanus humanus: New prospects for the treatment of pediculosis
PLOS Pathogens (2021)
-
Identification of the Aedes aegypti nAChR gene family and molecular target of spinosad
Pest Management Science (2020)
-
Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides
Journal of Agricultural and Food Chemistry (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.