Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implications of the high D/H ratio for the sources of water in Venus' atmosphere

Abstract

THE high abundance ratio of deuterium to hydrogen in the atmosphere of Venus (120 times that on Earth) can he interpreted either as the signature of a lost primordial ocean1, or of a steady state in which water is continuously supplied to the surface of Venus by comets or volcanic outgassing, balancing loss through hydrogen escape2,3. New observations4–6 of a water concentration of only 30 parts per million in Venus' atmosphere imply that the residence time of water in the atmosphere, before it escapes to space, is short compared with the age of the Solar System, casting doubt on the primordial ocean hypothesis. But a recent theoretical reanalysis of collisional ejection7 has increased estimates of the deuterium escape efficiency by a factor of 10: this means that if the venusian water budget is in steady state, the D/H ratio of the source water must be 10–15 times higher than that on Earth, ruling out cometary water, whose D/H ratio is thought to be lower than this8. Here I suggest that these observations can be understood either as the result of continuous outgassing from a highly fractionated mantle source (such as might result from severe dessication of the mantle, or massive hydrogen escape early in the planet's history) or Rayleigh fractionation after massive outgassing from catastrophic resurfacing of the planet in the past 0.5–1 Gyr.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Science 216, 630–633 (1982).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Grinspoon, D. H. Science 238, 1702–1704 (1987).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Grinspoon, D. H. & Lewis, J. S. Icarus 74, 21–35 (1988).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Pollack, J. B. et al. Icarus (in the press).

  5. 5

    de Bergh, C. et al. Adv. Space Res. (in the press).

  6. 6

    Donahue, T. M. & Hodges, R.R. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).

  7. 7

    Gurwell, M. A. & Yung, Y. L. Planet. Space Sci. (in the press).

  8. 8

    Eberhardt, P. et al. Astr. Astrophys. 187, 435–437 (1987).

    ADS  Google Scholar 

  9. 9

    Rodriguez, J. M., Prather, M. J. & McElroy, M. B. Planet. Space Sci. 32, 235–1355 (1984).

    Article  Google Scholar 

  10. 10

    Donahue, T. M. & Hartle, R. E. Geophys. Res. Lett. 19, 2449–2452 (1992).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Brace, L. H. et al. J. geophys. Res. 92, 15–26 (1987).

    ADS  Article  Google Scholar 

  12. 12

    Hodges, R. R. & Tinsley, B. A. J. geophys. Res. 91, 13649–13658 (1986).

    ADS  Article  Google Scholar 

  13. 13

    Grinspoon, D. H. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789. (1992).

  14. 14

    Hunten, D. M., Donahue, T. M., Walker, J. C. G. & Kasting, J. F. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S., Pollack, J. B. & Matthews, M.S.) 386–422 (Univ. of Arizona Press, 1989).

    Google Scholar 

  15. 15

    Lewis, J. S. & Grinspoon, D. H. Science 249, 1273–1275 (1990).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Donahue, T. M. & Hodges, R.R. J. geophys. Res. 97, 6083–6091 (1992b).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Krasnopolsky, V. A. Icarus 62, 221 (1985).

    ADS  Article  Google Scholar 

  18. 18

    Head, J. W., Crumpler, L., Aubele, J., Guest, J. & Saunders, R. S. J. geophys Res. 97, 13153–13197 (1992).

    ADS  Article  Google Scholar 

  19. 19

    Phillips, R. J. et al. J. geophys. Res. 97, 15923–15948 (1992).

    ADS  Article  Google Scholar 

  20. 20

    Schaber, G. G. et al. J. geophys. Res. 97, 13257–13302 (1992).

    ADS  Article  Google Scholar 

  21. 21

    Bullock, M. A., Grinspoon, D. H. & Head, J. W. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).

  22. 22

    Moore, J. G. Contrib. Mineral. Petrol. 28, 272 (1970).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Head, J. W., Parmentier, E. M. & Hess, P. C. Papers presented to int. Colloq. Venus. LPI Contrib. No. 789 (1992).

  24. 24

    Turcotte, D. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).

  25. 25

    Pollack, J. B., Toon, O. B. & Boese, R. J. geophys. Res. 85, 8223–8231 (1980).

    ADS  Article  Google Scholar 

  26. 26

    Kumar, S., Hunten, D. M. & Pollack, J. B. Icarus 55, 369–389 (1983).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kasting, J. F. & Pollack, J. B. Icarus 53, 479–508 (1983).

    ADS  CAS  Article  Google Scholar 

  28. 28

    de Bergh, C. et al. Science 251, 547–549 (1991).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grinspoon, D. Implications of the high D/H ratio for the sources of water in Venus' atmosphere. Nature 363, 428–431 (1993). https://doi.org/10.1038/363428a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing