Abstract
A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric C02 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of C02 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by C02, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
China’s terrestrial ecosystem carbon balance during the 20th century: an analysis with a process-based biogeochemistry model
Carbon Balance and Management Open Access 08 October 2022
-
Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase
Communications Earth & Environment Open Access 12 July 2022
-
Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)
Climatic Change Open Access 11 July 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Watson, R. T., Filho, L. G. M., Sanhueza, E. & Janetos, A. in Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (eds Houghton, J. T. et al.) 25–46 (Cambridge Univ. Press, Cambridge, 1992).
Mitchell, J. F. B., Manabe, S., Meleshko, V. & Tokioka, T. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T. et al.) 131–172 (Cambridge Univ. Press, Cambridge, 1990).
Melillo, J. M., Callaghan, T. V., Woodward, F. I., Salati, E. & Sinha, S. K. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T. et al.) 283–310 (Cambridge Univ. Press, Cambridge, 1990).
Agren, G. I., McMurtrie, R. E., Parton, W. J., Pastor, J. & Shugart, H. H. Ecol. Applic. 1, 118–138 (1991).
Lieth, H. in Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 237–263 (Springer, New York, 1975).
Esser, G. Tellus 39B, 245–260 (1987).
Esser, G. in Soils and the Greenhouse Effect (ed. Bouwman, A. F.) 249–261 (Wiley, Chichester, 1990).
McGuire, A. D. et al. Clim. Change (in the press).
Schimel, D. S., Parton, W. J., Kittel, T. G. F., Ojima, D. S. & Cole, C. V. Clim. Change 17, 13–25 (1990).
Burke, I. C. et al. BioScience 41, 685–692 (1991).
Running, S. W. & Nemani, R. R. Clim. Change 19, 349–368 (1991).
McGuire, A. D. et al. Globl biogeochem. Cycles 6, 101–124 (1992).
Emanuel, W. R., Shugart, H. H. & Stevenson, M. P. Clim. Change 7, 29–43 (1985).
Prentice, K. C. J. geophys. Res. 95 (D8), 11811–11830 (1990).
Woodward, F. I. & McKee, I. F. Envir. Int. 17, 535–546 (1991).
Prentice, I. C. et al. J. Biogeogr. 19, 117–134 (1992).
Smith, T. M., Leemans, R. & Shugart, H. H. Clim. Change 21, 367–384 (1992).
Raich, J. W. et al. Ecol. Applic. 1, 399–429 (1991).
Kimball, B. A. Agronomy J. 75, 779–788 (1975).
Gates, D. M. in Direct Effects of Increasing Carbon Dioxide on Vegetation, Report DOE/ER-0238 (eds Strain, B. R. & Cure, J. D.) 171–184 (US Department of Energy, Washington DC, 1985).
White, F. Vegetation of Africa (UNESCO, Paris, 1981).
Institute of Geography of the Siberian Department of USSR Academy of Sciences, Botanical Institute of USSR Academy of Sciences & Moscow State University Geography Department Vegetation of the USSR (GVGK, Minsk, 1990).
Hou, H. Y. et al. Vegetation Map of China (Map Publisher of the People's Republic of China, Beijing, 1979).
Matthews, E. J. Clim. Appl. Meteorol. 22, 474–487 (1983).
Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems, Environmental Sciences Division Publication No. 1997 (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1983).
Moscow State University Geographical Department Geographical Belts and Zonal Types of the Landscapes of the World Map (GVGK, Moscow, 1988).
Australian Surveying and Land Information Group Vegetation. Atlas of Australian Resources, Third Series, Vol. 6 (Commonwealth of Australia, Canberra, 1990).
Rowe, J. S. Forest Regions of Canada Publ. 1300 (Department of Fisheries and the Environment, Can. Forest Serv., Ottawa, 1972).
Joint Federal-State Land Use Planning Commission for Alaska Major Ecosystems of Alaska (US Geological Survey, Fairbanks, Alaska, 1973).
Kuchler, A. W. Potential Natural Vegetation of the Conterminous United States (American Geographical Society, New York, New York, 1964).
UNESCO Vegetation Map of South America (UNESCO, Paris, 1981).
Vorosmarty, C. J. et al. Globl biogeochem. Cycles 3, 241–265 (1989).
Deevey, E. S. Jr Scient. Am. 203, 195–204 (1960).
Whittaker, R. H. Communities and Ecosystems (Macmillan, New York, 1970).
Olson, J. S. in Temperate Forest Ecosystems (ed. Reichle, D. E.) 226–241 (Springer, New York, 1970).
Bazilevich, N. I., Rodin, L. E. & Rozov, N. N. Untersuchungen der Biologischen Produktivitat in Geographischer Sicht (5th Tagung Geogr. Ges., Leningrad, 1970).
Study of Critical Environmental Problems (SCEP) Man's Impact on the Global Environment (MIT Press, Cambridge, Massachusetts, 1970).
Golley, F. B. in Ecosystem Structure and Function. Ann. Biol. Colloq. 31 (ed. Wiens, J. A.) 69–70 (Oregon State University, Corvallis, Oregon, 1972).
Whittaker, R. H. & Likens, G. E. Hum. Ecol. 1, 357–369 (1973).
Whittaker, R. H. & Likens, G. E. in Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 305–328 (Springer, New York, 1975).
Ajtay, G. L., Ketner, P. & Duvigneaud, P. in The Global Carbon Cycle SCOPE 13 (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 129–182 (Wiley, Chichester, 1979).
Heimann, M. & Keeling, C. D. in Aspects of Climate Variability in the Pacific and Western Americas, Geophysical Monograph 55 (ed. Peterson, D. H.) 237–275 (Amer. Geophys. Union, Washington DC, 1989).
Schlesinger, W. H. Biogeochemistry: An Analysis of Global Change (Academic, San Diego, California, 1991).
Paul, E. A. & Clark, F. E. Soil Microbiology and Biochemistry (Academic, San Diego, California, 1989).
Jenne, R. L. in Global Climate Change: Implications, Challenges and Mitigation Measures (eds Majumdar et al.) 145–164 (Pennsylvania Academy of Sciences, Easton, Pennsylvania, 1992).
Willmot, C. J., Rowe, C. M. & Philpot, W. D. J. Am. Cart 12, 5–16 (1985).
Adams, R. M. et al. Nature 345, 219–224 (1990).
Vitousek, P. M. & Howarth, R. W. 1991. Biogeochemistry 13, 87–115 (1991).
Wong, S. C. Oecologia 44, 68–74 (1979).
Larigauderie, A., Hilbert, D. W. & Oechel, W. C. Oecologia 77, 544–549 (1988).
Goudriaan, J. & de Ruiter, H. E. Neth. J. agric. Sci. 31, 157–169 (1983).
Zangerl, A. R. & Bazzaz, F. A. Oecologia 62, 412–417 (1984).
Brown, K. & Higginbotham, K. O. Tree Physiol. 2, 223–232 (1986).
Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. Can. J. Bot. 64, 2993–2998 (1986).
Marks, S. & Clay, K. Oecologia 84, 207–214 (1990).
Johnson, R. H. & Lincoln, D. E. Oecologia 87, 127–134 (1991).
Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C. & Pitelka, L. F. BioScience 41, 96–104 (1991).
Sanchez, P. A., Bandy, E. E., Villachica, J. H. & Nicholaides, J. J. Science 216, 821–827 (1982).
Long, S. P. & Hutchin, P. R. Ecol. Applic. 1, 139–156 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Melillo, J., McGuire, A., Kicklighter, D. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240 (1993). https://doi.org/10.1038/363234a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/363234a0
This article is cited by
-
Contrasting Dynamics in the Fine Root Mass of Angiosperm and Gymnosperm Forests on the Global Scale
Ecosystems (2023)
-
China’s terrestrial ecosystem carbon balance during the 20th century: an analysis with a process-based biogeochemistry model
Carbon Balance and Management (2022)
-
Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase
Communications Earth & Environment (2022)
-
Integrating Aquatic Metabolism and Net Ecosystem CO2 Balance in Short- and Long-Hydroperiod Subtropical Freshwater Wetlands
Ecosystems (2022)
-
Ecosystem services provided by fungi in freshwaters: a wake-up call
Hydrobiologia (2022)