Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dTAFII80 subunit of Drosophila TFIID contains β-transducin repeats

Abstract

A KEY component of the RNA polymerase II transcriptional apparatus, TFIID, is a multi-protein complex containing the TATA box-binding protein (TBP) and at least seven tightly associated factors (TAFs)1,2. Although the functions of most TFIID subunits are unknown, it is clear that TAFs are not necessary for basal activity but that one or more are required for regulated transcription, and so behave as coactivators1–4. The presence of multiple subunits indicates that there is an intricate assembly process and that TAFs may be responsible for other activities. We have described the properties of the subunit dTAFII110, which can interact directly with the transcriptional activator Sp1 (ref. 5). In addition, the largest subunit, dTAFII250, binds directly to TBP and links other TAFs to the complex6. Here we describe the cloning, expression and partial characterization of the Drosophila TAF of Mr 80,000, dTAFII80. Sequence analysis reveals that dTAFII80 contains several copies of the WD40 (β-transducin) repeat7. Moreover, dTAFII80 shares extended sequence similarity with an Arabidopsis gene, COP1, which encodes a putative transcription factor that is thought to regulate development8. We have expressed recombinant dTAFII80 and begun to characterize its interaction with other members of the TFIID complex. Purified recombinant dTAFII80 is unable to bind TBP directly or to interact strongly with the C-terminal domain of dTAFII250 (Δ250). Instead, dTAFII80 is only able to recognize and interact with a higher-order complex containing TBP, Δ250, 110 and 60. These findings suggest the formation of TFIID may require an ordered assembly of the TAFs, some of which bind directly to TBP and others that are tethered to the complex as a result of specific TAF/TAF interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dynlacht, B. D., Hoey, T. & Tjian, R. Cell 55, 563–576 (1991).

    Article  Google Scholar 

  2. Tanese, N., Pugh, B. F. & Tjian, R. Genes Dev. 5, 2212–2224 (1991).

    Article  CAS  Google Scholar 

  3. Pugh, B. F. & Tjian, R. Cell 61, 1187–1197 (1990).

    Article  CAS  Google Scholar 

  4. Zhou, Q., Lieberman, P. M., Boyer, T. G. & Berk, A. J. Genes Dev. 6, 1964–1974 (1992).

    Article  CAS  Google Scholar 

  5. Hoey, T. et al. Cell 72, 247–270 (1993).

    Article  CAS  Google Scholar 

  6. Weinzierl, R. O. J., Dynlacht, B. D. & Tjian, R. Nature 362, 511–517 (1993).

    Article  ADS  CAS  Google Scholar 

  7. van der Voorn, L. & Ploegh, H. L. FEBS Lett. 307, 131–134 (1992).

    Article  CAS  Google Scholar 

  8. Deng, Z.-W. et al. Cell 71, 791–801 (1992).

    Article  CAS  Google Scholar 

  9. Fong, H. K. W. et al. Proc. natn. Acad. Sci. U.S.A. 83, 2162–2166 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Yarfitz, S., Provost, N. M. & Hurley, J. B. Proc. natn. Acad. Sci. U.S.A. 85, 7134–7137 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Levine, M. A., Smallwood, P. M., Moen, P. T., Hellman, L. J. & Ann, T. G. Proc. natn. Acad. Sci. U.S.A. 87, 2329–2333 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Peterson, T. A. et al. Nature 309, 556–558 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Yochem, J. & Byers, B. J. molec. Biol. 195, 233–245 (1987).

    Article  CAS  Google Scholar 

  14. Dalrymple, M. A., Petersen-Bjorn, S., Friesen, J. D. & Beggs, J. D. Cell 58, 811–812 (1989).

    Article  CAS  Google Scholar 

  15. Banroques, J. & Abelson, J. N. Molec. cell Biol. 9, 3710–3719 (1989).

    Article  CAS  Google Scholar 

  16. Williams, F. E. & Trumbly, R. J. Molec. cell. Biol. 10, 6500–6511 (1990).

    Article  CAS  Google Scholar 

  17. Williams, F. E., Varanasi, U. & Trumbly, R. J. Molec. cell. Biol. 11, 3307–3316 (1991).

    Article  CAS  Google Scholar 

  18. Keleher, C. A., Redd, M. J., Schultz, J., Carlson, M. & Johnson, A. D. Cell 68, 709–719 (1992).

    Article  CAS  Google Scholar 

  19. Zinn, K., McAllister, L. & Goodman, C. S. Cell 53, 577–587 (1988).

    Article  CAS  Google Scholar 

  20. Poole, S. J., Kauvar, L. M., Drees, B. & Kornberg, T. Cell 40, 37–43 (1985).

    Article  CAS  Google Scholar 

  21. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. Cell 51, 1079–1090 (1987).

    Article  CAS  Google Scholar 

  22. Jantzen, H. M., Chow, A. M., King, D. S. & Tjian, R. Genes Dev. 6, 1950–1963 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dynlacht, B., Weinzierl, R., Admon, A. et al. The dTAFII80 subunit of Drosophila TFIID contains β-transducin repeats. Nature 363, 176–179 (1993). https://doi.org/10.1038/363176a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363176a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing