Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large magnetoresistance in non-magnetic silver chalcogenides

Abstract

Several materials have been identified over the past few years as promising candidates for the development of new generations of magnetoresistive devices. These range from artificially engineered magnetic multilayers1 and granular alloys2,3, in which the magnetic-field response of interfacial spins modulates electron transport to give rise to ‘giant’ magnetoresistance4, to the manganite perovskites5,6,7, in which metal–insulator transitions driven by a magnetic field give rise to a ‘colossal’ magnetoresistive response (albeit at very high fields). Here we describe a hitherto unexplored class of magnetoresistive compounds, the silver chalcogenides. At high temperatures, the compounds Ag2S, Ag2Se and Ag2Te are superionic conductors; below 400 K, ion migration is effectively frozen and the compounds are non-magnetic semiconductors8,9 that exhibit no appreciable magnetoresistance10. We show that slightly altering the stoichiometry can lead to a marked increase in the magnetic response. At room temperature and in a magnetic field of 55 kOe, Ag2+δSe and Ag2+δTe show resistance increases of up to 200%, which are comparable with the colossal-magnetoresistance materials. Moreover, the resistance of our most responsive samples exhibits an unusual linear dependence on magnetic field, indicating both a potentially useful response down to fields of practical importance and a peculiarly long length scale associated with the underlying mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistivity ρ as a function of temperature T at a series of magnetic fields H = 0, 9, 17, 26,36, 48 and 55 kOe for Ag2+δSe (a) and H = 0, 10, 20, 29, 35, 43 and 55 kOe for Ag2+δTe (b).
Figure 2: The normalized magnetoresistance Δρ(T, H )/ρ(T, 0) for Ag2+δSe as a function of magnetic field H at a series of temperatures T = 4.5, 30, 60, 90, 180, 270 and 300 K.
Figure 3: Comparison of the normalized magnetoresistance of the silver chalcogenides and a representative colossal-magnetoresistance material at H = 40 kOe.
Figure 4: Hall coefficient R H (n-type) plotted against T −1for a set of silver chalcogenide samples labelled by their magnetoresistive response (at T = 4.5 K and H = 55 kOe).

Similar content being viewed by others

References

  1. Baibich, M. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Berkowitz, A. E. et al. Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys. Rev. Lett. 68, 3745–3748 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Xiao, J. Q., Jiang, J. S. & Chien, C. L. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68, 3749–3752 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Camley, R. E. & Stamps, R. L. Magnetic multilayers: spin configurations, excitations and giant magnetoresistance. J. Phys. Cond. Mater. 5, 3727–3786 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Searle, C. W. & Wang, S. T. Studies of the ionic ferromagnet (LaPb)MnO3. III. Ferromagnetic resonance studies. Can. J. Phys. 47, 2703–2708 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Tokura, Y. et al. Origins of colossal magnetoresistance in perovskite-type manganese oxides. J. Appl. Phys. 79, 5288–5291 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Dalven, R. & Gill, R. Energy gap in β-Ag2Se. Phys. Rev. 159, 645–649 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Junod, P., Heidiger, H., Kilchör, B. & Wullschleger, J. Metal–non-metal transition in silver chalcogenides. Phil. Mag. 36, 941–958 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Junod, P. Relations entre la structure cristalline et les propriétés électroniques des combinaisons Ag2S, Ag2Se, Cu2Se. Helv. Phys. Acta 32, 567–600 (1959).

    CAS  Google Scholar 

  11. Jan, J.-P. in Solid State Physics, Vol. 5(eds Seitz, F. & Turnbull, D.) 1–96 (Academic, New York, (1957)).

    Google Scholar 

  12. Allgaier, R. S., Restorff, J. B. & Houston, B. Weak- and strong-field magnetoresistance in (111)-oriented n-type PbTe epitaxial films between 1.8 and 300 K. J. Appl. Phys. 53, 3110–3116 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Schönwald, H. Die Beweglichkeit der langsamen und schnellen Löcher in Indiumantimonid. Z.Naturf. 19a, 1276–1296 (1964).

    ADS  Google Scholar 

  14. Brug, J. A., Anthony, T. C. & Nickel, J. H. Magnetic recording head materials. Mater. Res. Soc. Bull. 21, 23–27 (1996).

    Article  CAS  Google Scholar 

  15. Parkin, S. S. P., Li, Z. G. & Smith, D. J. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers. Appl. Phys. Lett. 58, 2710–2712 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Rosenbaum, T. F., Carter, S. A. & Honig, J. M. High sensitivity sensor for moderate pressures. Rev. Sci. Instrum. 67, 617–618 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Mott, N. F. The Metal–Insulator Transition (Taylor and Francis, London, (1974)).

    Google Scholar 

  18. Schiffer, P. et al. Low temperature magnetoresistance and the magnetic phase diagram of La1−x Cax MnO3. Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Hwang, H. et al. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Aliev, S. A. & Aliev, F. F. Band parameters and energy structure of β-Ag2Se. Izv. Akad. Nauk SSSR, Neorgan. Mater. 21, 1869–1872 (1985).

    CAS  Google Scholar 

  21. Herring, C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. J. Appl. Phys. 31, 1939–1953 (1960).

    Article  ADS  Google Scholar 

  22. v. Oehsen, U. & Schmalzried, H. Thermodynamic investigations of Ag2Se. Ber. Bunsenges. Phys. Chem. 85, 7–14 (1981).

    Article  Google Scholar 

  23. Valverde, N. Coulometrische Titrationen zur Bestimmung des Homogenitätsbereiches von festem Silbersulfid, Silberselenid und Silbertellurid. Z. Phys. Chem. NF 70, 113–127 (1970).

    Article  CAS  Google Scholar 

  24. Khazeni, K. et al. Effect of pressure on the magnetoresistance of single crystal Nd0.5Sr0.36Pb0.14MnO3−δ. Phys. Rev. Lett. 76, 295–298 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. L. Price and B. J. Wuensch for discussions. The work at the University of Chicago was supported primarily by the MRSEC Program of the National Science Foundation. The work at Argonne National Laboratory was supported by DOE Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Rosenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R., Husmann, A., Rosenbaum, T. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997). https://doi.org/10.1038/36306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36306

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing