Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of the mouse klotho gene leads to a syndrome resembling ageing

Abstract

A new gene, termed klotho, has been identified that is involved in the suppression of several ageing phenotypes. A defect in klotho gene expression in the mouse results in a syndrome that resembles human ageing, including a short lifespan, infertility, arteriosclerosis, skin atrophy, osteoporosis and emphysema. The gene encodes a membrane protein that shares sequence similarity with the β-glucosidase enzymes. The klotho gene product may function as part of a signalling pathway that regulates ageing in vivo and morbidity in age-related diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macroscopic findings of klotho mice (8 weeks old).
Figure 2: Short lifespan, growth retardation, and hypokinesis in kl/kl mice.
Figure 3: Histological analysis of kl/kl mice.
Figure 7: Rescue of the klotho mice by exogenous kl gene expression.
Figure 4: Identification of mouse klotho locus.
Figure 5: Expression of the mouse klotho gene.
Figure 6: Amino-acid sequences and primary structure of mouse KL protein and its human homologue.

Similar content being viewed by others

References

  1. Maser, E. J. in Handbook of Physiology, 11: Aging (ed. Masoro, E. J.) 3–24 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  2. Yu, C.-E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Ellis, N. A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  Google Scholar 

  4. Weeda, G. et al. Apresumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62, 777–791 (1990).

    Article  CAS  Google Scholar 

  5. Salk, D., Au, K., Hoehn, H. & Martin, G. M. Cytogenetics of Werner's syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet. Cell Genet. 30, 92–107 (1981).

    Article  CAS  Google Scholar 

  6. Ellis, N. A. Mutation-causing mutations. Nature 381, 110–111 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Kuro-o, M. et al. Salt-sensitive hypertension in transgenic mice overexpressing Na+-proton exchanger. Circ. Res. 76, 148–153 (1995).

    Article  CAS  Google Scholar 

  8. Wolfson, L. & Katzman, R. in Principles of Geriatric Neurology (eds Katz, R. &Rowe, J. W.) 75–88 (Davis, Philadelphia, 1992).

    Google Scholar 

  9. Hausman, P. B. & Weksler, M. E. in Handbook of the Biology of Aging (eds Finch, C. E. &Schneider, E.L.) 414–432 (Van Nostrand Reinhold, New York, 1985).

    Google Scholar 

  10. Lansing, A. I. in The Arterial Wall: Aging, Structure, and Chemistry 136–160 (Williams &Wilkins, Baltimore, 1959).

    Google Scholar 

  11. Robbins, S. L., Angell, M. A. & Kumar, V. in Basic Pathology 3–27 (Igaku-shoin/Saunders, Tokyo, 1981).

    Google Scholar 

  12. Melton, L. J. & Riggs, B. L. in Osteoporosis: Etiology, Diagnosis and Management (eds Riggs, B. L. &Melton, L. J.) 155–179 (Raven, New York, 1988).

    Google Scholar 

  13. Chuttani, A. & Gilchrest, B. A. in Handbook of Physiology, 11: Aging (ed. Masoro, E. J.) 309–324 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  14. Sparrow, D. & Weiss, S. T. in Handbook of Physiology, 11: Aging (ed. Masoro, E. J.) 475–483 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  15. Corpas, E. S., Harman, M. & Blackman, M. R. Human growth hormone and human aging. Endocr. Rev. 14, 20–39 (1993).

    Article  CAS  Google Scholar 

  16. Uberbacher, E. C. & Mural, R. J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl Acad. Sci. USA 88, 11261–11265 (1991).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  17. Heijne, G. Anew method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  Google Scholar 

  18. Mantei, N. et al. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J. 7, 2705–2713 (1988).

    Article  CAS  PubMed Central  Google Scholar 

  19. Grabnitz, F., Seiss, M., Rucknagel, K. P. & Staudenbauer, W. L. Structure of the β-glucosidase gene bg/A of Clostridium thermocellum. Eur. J. Biochem. 200, 301–309 (1991).

    Article  CAS  Google Scholar 

  20. Uetsuki, T., Nakao, A., Nagata, S. & Kaziro, Y. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1α. J. Biol. Chem. 264, 5791–5798 (1989).

    Article  CAS  Google Scholar 

  21. Kim, D. W., Uetsuki, T., Kajiro, Y., Yamaguchi, N. & Sugano, S. Use of the human elongation factor 1α promoter as a versatile and efficient expression system. Gene 91, 217–223 (1990).

    Article  CAS  Google Scholar 

  22. Hanaoka, K., Hayasaka, M., Uetsuki, T., Fujisawa-Sehara, A. & Nabeshima, Y. Astable cellular marker for the analysis of mouse chimeras: the bacterial chloramphenicol acetyltransferase gene driven by the human elongation factor 1α promoter. Differentiation 48, 183–189 (1991).

    Article  CAS  Google Scholar 

  23. Martin, G. M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects 14, 5–39 (1978).

    CAS  PubMed  Google Scholar 

  24. Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM): a novel murine model of accelerated sensescence. L. Am. Geriatr. Soc. 39, 911–919 (1991).

    Article  CAS  Google Scholar 

  25. Barlow, C. et al. Atm -deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  26. Kaname, T. et al. Mapping basigin (BSG), a member of the immunoglobulin superfamily, to 19p13.3. Cytogenet Cell Genet. 64, 195–197 (1993).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank E. Ozawa, T. Ishikawa, K. Hanaoka and I. Nonaka for earlier contributions to this work, T. Matsuzaki, S. Kameya and Y. Hiroi for maintaining mice, and H. Yamato and Y. Nagai for bone analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makoto Kuro-o or Yo-ichi Nabeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuro-o, M., Matsumura, Y., Aizawa, H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997). https://doi.org/10.1038/36285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36285

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing