Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thymocyte apoptosis induced by p53-dependent and independent pathways


DEATH by apoptosis is characteristic of cells undergoing deletion during embryonic development, T- and B-cell maturation and endocrine-induced atrophy1. Apoptosis can be initiated by various agents1–5 and may be a result of expression of the oncosuppressor gene p53 (refs 6–8). Here we study the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca2+-dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Our results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Arends, M. J. & Wyllie, A. H. Int. Rev. exp. Path. 32, 223–254 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J. & Owen, J. J. T. Nature 337, 181–184 (1989).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wyllie, A. H. Nature 284, 555–556 (1980).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Sellins, K. S. & Cohen, J. J. J. Immun. 139, 3199–3206 (1987).

    CAS  PubMed  Google Scholar 

  5. 5

    McConkey, D. J., Orrenius, S. & Jondal, M. Immun, Today 11, 120–121 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Ryan, J. J., Danish, R., Gottlieb, C. A. & Clarke, M. F. Molec. cell. Biol. 13, 711–719 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Yonish-Rouach, E. et al. Nature 352, 345–347 (1991).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Shaw, P. et al. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hooper, M. L., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Yewdell, J. W., Gannon, J. V. & Lane, D. P. J. Virol. 59, 444–452 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Clarke, A. R. et al. Nature 359, 328–330 (1992).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Walker, P. R. et al. Cancer Res. 51, 1078–1085 (1991).

    CAS  PubMed  Google Scholar 

  13. 13

    Zhivotovsky, B. D., Seiliev, A. A. & Hanson, K. P. Int. J. Rad. Biol. 42, 199–204 (1982).

    CAS  Google Scholar 

  14. 14

    Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Cancer Res. 51, 5304–5311 (1991).

    Google Scholar 

  15. 15

    Kuerbitz, S. J., Plunkett, B. S., Walsh, M. V. & Kastan, M. B. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495 (1992).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Roy, C. et al. Expl. Cell Res. 200, 416–424 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Bertrand, R. Sarang, M. Jenkin, J., Kerrigan, D. & Pommier, Y. Cancer Res. 51, 6280–6285 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Fanidi, A., Harrington, E. A. & Evan, G. I. Nature 359, 554–556 (1992).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Iseki, R., Mukai, M. & Iwata, M. J. Immun. 147, 4286–4292 (1991).

    CAS  PubMed  Google Scholar 

  20. 20

    Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. J. J. Path 142, 67–78 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Kastan, M. B. et al. Cell 71, 587–597 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Bienz, B., Zakut-Houri, R., Givol, D. & Oren, M. EMBO J. 3, 2179–2183 (1984).

    CAS  Article  Google Scholar 

  23. 23

    McBurney, M. W. et al. Nucleic Acids Res. 19, 5755–5761 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Colbere-Garapin, F., Chousterman, S., Horodniceanu, F., Kourilisky, P. & Garapin, A.-X. Proc. natn. Acad. Sci. U.S.A. 76, 3755–3759 (1979).

    ADS  CAS  Article  Google Scholar 

  25. 25

    van der Lugt, N., Robanus Maandag, E., te Riele, H., Laird, P. W. & Berns, A. Gene 105, 263–267 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Kaster, K. R., Burgett, S. G., Rao, R. N. & Ignolia, T. D. Nucleic Acids Res. 11, 6895–6911 (1983).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarke, A., Purdie, C., Harrison, D. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing