Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hard X-rays from accretion disk boundary layers

Abstract

ACCRETION disks1,2 are found in many astrophysical objects, ranging from newly formed stars and mass-transferring binary systems to quasars and other active galactic nuclei. An important feature of accretion disks is the boundary layer—the interface between the disk and the accreting objects—where up to half the accretion luminosity may be liberated. The lack of a satisfactory description of the flow and thermal structure of this layer has long been a handicap when modelling disk spectra. Here we report numerical solutions of a model of thin accretion disks around a central white dwarf which includes a self-consistent description of the boundary layer. We find two distinct kinds of solution depending on the mass accretion rate . At high rates, we find optically thick boundary layers whose radial width and peak temperature decrease with decreasing , but when the accretion rate falls below a critical value, the boundary layer becomes optically thin, and the width and temperature increase dramatically. Our results provide an explanation for the hard X-rays observed3 in cataclysmic variables, particularly at low . It should be possible to extend our analysis to other accretion-disk systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shakura, N. I. & Sunyaev, R. A. Astr. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  2. Pringle, J. E. A. Rev. Astr. Astrophys. 19, 137–162 (1981).

    Article  ADS  Google Scholar 

  3. Patterson, J. & Raymond, J. C. Astrophys. J. 292, 535–549 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Popham, R. & Narayan, R. Astrophys. J. 370, 604–614 (1991).

    Article  ADS  Google Scholar 

  5. Paczynski, B. Astrophys. J. 370, 597–603 (1991).

    Article  ADS  Google Scholar 

  6. Narayan, R. Astrophys. J. 394, 261–267 (1992).

    Article  ADS  Google Scholar 

  7. Popham, R. & Narayan, R. Astrophys. J. 394, 255–260 (1992).

    Article  ADS  Google Scholar 

  8. Paczyóski, B. & Bisnovatyi-Kogan, G. Acta astr. 31, 283–291 (1981).

    ADS  Google Scholar 

  9. Muchotrzeb, B. & Paczynski, B. Acta astr. 32, 1–11 (1982).

    ADS  Google Scholar 

  10. Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Astrophys J. 332, 646–658 (1988).

    Article  ADS  Google Scholar 

  11. Hubeny, I. Astrophys. J. 351, 632–641 (1990).

    Article  ADS  Google Scholar 

  12. Tylenda, R. Acta astr. 31, 267–281 (1981).

    ADS  Google Scholar 

  13. Regev, O. Astr. Astrophys. 126, 146–151 (1983).

    ADS  Google Scholar 

  14. Patterson, J. & Raymond, J. C. Astrophys. J. 292, 550–558 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Sunyaev, R. A. & Trumper, J. Nature 279, 506–508 (1979).

    Article  ADS  CAS  Google Scholar 

  16. McClintock, J. Ann. N. Y. Acad. Sci. 647, 495–502 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Rees, M. J. A. Rev. Astr. Astrophys. 22, 471–506 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Shapiro, S. L., Lightman, A. P. & Eardley, D. M. Astrophys. J. 204, 187–199 (1976).

    Article  ADS  Google Scholar 

  19. Bertout, C., Basri, G. & Bouvier, J. Astrophys. J. 330, 350–373 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Hartigan, P. et al. Astrophys. J. 382, 617–635 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R., Popham, R. Hard X-rays from accretion disk boundary layers. Nature 362, 820–822 (1993). https://doi.org/10.1038/362820a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362820a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing