Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Projection structure of rhodopsin

Abstract

LIGHT absorption by the visual pigment rhodopsin1,2 triggers, through G-protein coupling, a cascade of events in the outer segment of the rod cell of the vertebrate retina that results in membrane hyperpolarization and nerve excitation3–5. Rhodopsin, which contains 348 amino acids6–8, has seven helices that cross the disk membrane6,9 and its amino terminus is extracellular. A wealth of biochemical data is available for rhodopsin: 11-cis retinal is bound10 to lysine 296 in helix VII; glutamic acid 113 on helix III is the counterion to the protonated Schiff's base11,12; a disulphide bridge, cystine 110–187, connects helix III to the second extracellular loop e2 (refs 13, 14); the carboxy terminus has two palmitoylated cysteines forming a cytoplasmic loop i4 (ref. 15); three intracellular loops i2, i3 and i4 mediate activation of the heterotrimeric G protein transducin16,17; glutamic acid 135 and arginine 136 at the cytoplasmic end of helix III affect binding of transducin18. But to provide a framework to interpret these data, not only for rhodopsin but for other G-protein-coupIed receptors, requires the structure to be determined. Here we present a projection map of rhodopsin showing the configuration of the helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hargrave, P. A. Curr. Opin. struct. Biol. 1, 575–581 (1991).

    Article  CAS  Google Scholar 

  2. Henderson, R. & Schertler, G. F. X. Phil. Trans. R. Soc. B326, 379–389 (1990).

    Article  CAS  Google Scholar 

  3. De Grip, W. J. Photochem. Photobiol. 48, 799–810 (1988).

    Article  CAS  Google Scholar 

  4. Chabre, M. & Deterre P. Eur. J. Biochem. 179, 255–266 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Stryer, L. J. biol. Chem. 266, 10711–10714 (1991).

    CAS  PubMed  Google Scholar 

  6. Ovchinnikov, Y. A. et al. Bioorg. Khim. 8, 1424–1427 (1982).

    CAS  Google Scholar 

  7. Hargrave, P. A. et al. Biophys. struct. Mech. 9, 235–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Nathans, J. & Hogness, D. S. Cell 34, 807–814 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Khorana, H. G. J. biol. Chem. 267, 1–4 (1992).

    CAS  PubMed  Google Scholar 

  10. Bownds, D. Nature 216, 1178–1181 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhukovsky, E. A. & Oprian, D. D. Science 246, 928–930 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sakmar, T. P., Franke, R. R. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 86, 8309–8313 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Karnik, S. S., Sakmar, T. P., Chen, H.-B. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 85, 8459–8463 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Karnik, S. S. & Khorana, H. G. J. biol. Chem. 265, 17520–17524 (1990).

    CAS  PubMed  Google Scholar 

  15. Ovchinnikov, Y. A., Abdulaev, N. G. & Bogachuk, A. S. FEBS Lett. 230, 1–5 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Hargrave, P. A., Hamm, H. E. & Hofmann, K. P. Bioessays (in the press).

  17. König, B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6878–6882 (1989).

    Article  ADS  Google Scholar 

  18. Franke, R. R., König, B., Sakmar, T. P., Khorana, H. G. & Hofmann, K. P. Science 250, 123–125 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. De Grip, W. J. Meth. Enzym. 81, 197–207 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Kühlbrandt, W. Q. Rev. Biophys. 25, 1–49 (1992).

    Article  PubMed  Google Scholar 

  21. Corless, J. M., McCaslin, D. R. & Scott, B. L. Proc. natn. Acad. Sci. U.S.A. 79, 1116–1120 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Dratz, E. A., Van Breemen, J. F. L., Kamps, K. M. P., Keegstra, W. & Van Bruggen, E. F. J. Biochim. biophys. Acta 832, 337–342 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Demin, V. V., Yurkova, E. V., Kuzin, A. P., Barnakov, A. N. & Abdulaev, N. G. in Retinal Proteins (ed. Ovchinnikov, Y. A.) 519–524 (VNU Science. Utrecht, 1987).

    Google Scholar 

  24. Henderson, R. et al. molec. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  25. Baldwin, J. M., EMBO J. (in the press).

  26. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Ultramicroscopy 19, 147–178 (1986).

    Article  CAS  Google Scholar 

  27. Ceska T. A. & Henderson R. J. molec. Biol. 213, 539–560 (1990)

    Article  CAS  PubMed  Google Scholar 

  28. Unwin, P. N. T. & Henderson, R. J. molec. Biol. 94, 425–440 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schertler, G., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993). https://doi.org/10.1038/362770a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362770a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing