Letter | Published:

Separation of chiral phases in monolayer crystals of racemic amphiphiles

Nature volume 362, pages 614616 (15 April 1993) | Download Citation

Subjects

Abstract

OPTICAL activity manifested by chiral molecules and crystals is of long-standing interest in physics, chemistry, biology and geology1,2. The structure of chiral lattices in two and three dimensions may provide insights into chiral discrimination, and chiral phases play an important part in the physics and applications of liquid-crystal and amphiphilic films3–7. Here we report the observation of spontaneous separation of chiral phases in an oriented monolayer of rigid, chiral amphiphiles deposited on mica. Atomic force microscopy of the ordered films reveals domains of mirror-image structures. We propose that this may be the signature of separation into domains of pure enantiomers, although other possibilities exist. This separation of chiral phases in two dimensions may be considered analogous to the spontaneous resolution of enantiomers in three-dimensional crystallization, as exploited by Pasteur in 1848 to isolate enantiomers of sodium tartrate1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    C.R. Acad. Sci. Paris 26, 535–539 (1848).

  2. 2.

    , & Chem. Rev. 80, 215–230 (1980).

  3. 3.

    , , & Phys. Rev. Lett. 70, 1139 (1993).

  4. 4.

    Arkiv Kem. 17, 183–195 (1960); 21, 395–406 (1962); 23, 299–306 (1963).

  5. 5.

    , & Acc. chem. Res. 22, 131–138 (1989).

  6. 6.

    & A. Rev. phys. Chem. 43, 207–236 (1992).

  7. 7.

    , , , & Phys. Rev. Lett. 67, 703–708 (1991).

  8. 8.

    International Tables for X-ray Crystallography, Vol. 1 (eds Henry, N. F. M & Londsdale, K.) Ch. 2 (Kynoch, Birmingham, 1952).

  9. 9.

    , , , & Ber. Bunseng. Phys. Chem. 95, 1514–1520 (1991).

  10. 10.

    , , & Science 257, 508–511 (1992).

  11. 11.

    et al. Nature 349, 398–400 (1991).

  12. 12.

    & Phys. Rev. Lett. 67, 2029–2032 (1991).

  13. 13.

    , , & J. phys. Chem. 85, 2421–2425 (1981).

  14. 14.

    & Chem. Phys. Lett. 194, 370–374 (1992).

  15. 15.

    & The Atom—Atom Potential Method 89 (Springer, Berlin, 1987).

Download references

Author information

Affiliations

  1. Department of Chemistry, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA

    • C. J. Eckhardt
    • , N. M. Peachey
    • , D. R. Swanson
    • , J. M. Takacs
    • , M. A. Khan
    •  & X. Gong
  2. Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA

    • J.-H. Kim
    • , J. Wang
    •  & R. A. Uphaus

Authors

  1. Search for C. J. Eckhardt in:

  2. Search for N. M. Peachey in:

  3. Search for D. R. Swanson in:

  4. Search for J. M. Takacs in:

  5. Search for M. A. Khan in:

  6. Search for X. Gong in:

  7. Search for J.-H. Kim in:

  8. Search for J. Wang in:

  9. Search for R. A. Uphaus in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/362614a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.