Letter | Published:

Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch

Nature volume 362, pages 557560 (08 April 1993) | Download Citation

Subjects

Abstract

DURING neurogenesis in Drosophila, groups of equipotential, neurally competent cells choose between epidermal and neural fates1–4. Notch, a phylogenetically conserved transmembrane protein5–9, may act as a receptor4,10 in a lateral signalling pathway in which a single neural precursor is chosen from each group and the neural fate of the other cells is inhibited, causing them to differentiate into epidermis11–13. Possible intracellular transduction events mediating signals from Notch are, however, unknown, shaggy is also required for the lateral signal4,14 and encodes serine/threonine protein kinases15,16 with homology to the glycogen synthase kinase-3 (GSK-3) enzymes17 that act in signal transduction pathways in vertebrates17. We report here that, in transgenic flies, GSK-3/β can substitute for shaggy, and we also present a study of epistatic relationships between shaggy and gain and loss of function alleles of Notch. The results indicate that shaggy/GSK-3 is part of a signalling pathway downstream of Notch

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) (Cold Spring Harbor Laboratory Press, New York, in the press).

  2. 2.

    & Development 114, 939–946 (1992).

  3. 3.

    & Development 110, 927–932 (1990).

  4. 4.

    & Cell 64, 1083–1092 (1991).

  5. 5.

    , , & Cell 43, 567–581 (1985).

  6. 6.

    , & Molec. cell. Biol. 6, 3094–3108 (1986).

  7. 7.

    , & Science 249, 1438–1441 (1990).

  8. 8.

    et al. Cell 66, 649–661 (1991).

  9. 9.

    , & Development 113, 199–205 (1991).

  10. 10.

    et al. Cell 67, 687–699 (1991).

  11. 11.

    & Devl Biol. 111, 206–219 (1985).

  12. 12.

    Am. Sci. 42, 213–247 (1954).

  13. 13.

    J. exp. Biol. 17, 180–200 (1940).

  14. 14.

    & Development 106, 57–66 (1989).

  15. 15.

    , , & Nature 345, 825–829 (1990).

  16. 16.

    et al. EMB0 J. 9, 2877–2884 (1990).

  17. 17.

    Trends Biochem. Sci. 16, 177–181 (1991).

  18. 18.

    & Development (in the press).

  19. 19.

    , , & Cell 51, 539–548 (1987).

  20. 20.

    , , , & EMBO J. (in the press).

  21. 21.

    & Devl. Biol. 142, 13–30 (1990).

  22. 22.

    EMBO J. 9, 2431–2438 (1990).

  23. 23.

    , , & Nature 341, 442–444 (1989).

  24. 24.

    & Genes Dev. 2, 495–501 (1988).

  25. 25.

    , , & Genes Dev. 5, 996–1008 (1991).

  26. 26.

    et al. Cell 64, 573–584 (1991).

  27. 27.

    , , , & Oncogene 7, 347–353 (1992).

  28. 28.

    & Cell 68, 271–281 (1992).

Download references

Author information

Affiliations

  1. Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de I'lNSERM, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France

    • Laurent Ruel
    • , Marc Bourouis
    • , Pascal Heitzler
    • , Véronique Pantesco
    •  & Pat Simpson

Authors

  1. Search for Laurent Ruel in:

  2. Search for Marc Bourouis in:

  3. Search for Pascal Heitzler in:

  4. Search for Véronique Pantesco in:

  5. Search for Pat Simpson in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/362557a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.