Letter | Published:

Interaction between a transcriptional activator and transcription factor IIB in vivo

Nature volume 362, pages 549553 (08 April 1993) | Download Citation

Subjects

Abstract

TRANSCRIPTION of messenger RNA-encoding genes in vitro requires many protein factors1,2. Transcription factor IID, possibly with the cooperation of TFIIA, binds to the TATA element of the promoter3–5, forming a complex that can bind TFIIB (refs 6,7) followed by RNA polymerase II (refs 6,8) and other factors9. One or more of these steps is thought to be facilitated by gene-specific transcriptional activation proteins10–12; this seems to require TFI ID-associated auxiliary factors13–15 and may involve direct contact between the activator and TFIID16,17 and/or TFIIB18,19. If such contact is necessary in vivo, activation might conceivably be blocked by a TFIIB derivative containing the sequences necessary for this interaction, but lacking those necessary for binding to the rest of the transcriptional apparatus, an effect similar to that referred to as squelching20 or transcriptional interference21. Here we show that the activity of the glutamine-rich fushi tarazu activation domain is indeed blocked by truncated TFIIB derivatives in Drosophila Schneider L2 cells, suggesting that it is mediated by interactions with TFIIB.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & A. Rev. Biochem. 59, 711–754 (1990).

  2. 2.

    & Progr. Nucl. Acids Res. molec. Biol. 44, 67–108 (1993).

  3. 3.

    & Cell 67, 557–567 (1991).

  4. 4.

    , & Molec. cell. Biol. 12, 413–421 (1992).

  5. 5.

    & J. biol. Chem. 266, 19320–19327 (1991).

  6. 6.

    , , & Cell 56, 549–561 (1989).

  7. 7.

    , & Nature 352, 689–695 (1991).

  8. 8.

    et al. Proc. natn. Acad. Sci. U.S.A. 88, 9999–10003 (1991).

  9. 9.

    , & J. biol. Chem. 267, 2786–2793 (1992).

  10. 10.

    & Science 245, 371–378 (1989).

  11. 11.

    & A. Rev. Biochem. 58, 799–839 (1990).

  12. 12.

    Cell 66, 1067–1070 (1991).

  13. 13.

    , & Cell 66, 563–575 (1991).

  14. 14.

    , , & Cell 66, 981–993 (1991).

  15. 15.

    , & Genes Dev. 5, 2212–2224 (1992).

  16. 16.

    , & Nature 345, 783–786 (1990).

  17. 17.

    , , , & Nature 351, 588–590 (1991).

  18. 18.

    & Cell 64, 971–981 (1991).

  19. 19.

    , , & Nature 353, 569–571 (1991).

  20. 20.

    & Nature 334, 721–724 (1988).

  21. 21.

    et al. Cell 57, 433–442 (1989).

  22. 22.

    et al. Proc. natn. Acad. Sci. U.S.A. 89, 2839–2843 (1991).

  23. 23.

    & Genes Dev. 6, 1542–1552 (1992).

  24. 24.

    et al. Molec. cell. Biol. 8, 2159–2165 (1988).

  25. 25.

    et al. Proc. natn. Acad. Sci. U.S.A. 80, 4949–4953 (1983).

  26. 26.

    & Genes Dev. 6, 304–315 (1992).

  27. 27.

    , & Cell 68, 977–988 (1992).

  28. 28.

    , & Science 231, 699–704 (1986).

  29. 29.

    , & Cell 56, 573–583 (1989).

  30. 30.

    , , & Nature 356, 610–612 (1988).

  31. 31.

    , , & Nature 335, 563–564 (1988).

Download references

Author information

Author notes

    • Sharon Wampler

    Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA

Affiliations

  1. Department of Biological Sciences, Columbia University, New York, New York 10027, USA

    • John Colgan
    • , Sharon Wampler
    •  & James L. Manley

Authors

  1. Search for John Colgan in:

  2. Search for Sharon Wampler in:

  3. Search for James L. Manley in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/362549a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.