Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Computer simulation of hydrogen embrittlement in metals

Abstract

IT has been long known that hydrogen can substantially reduce the mechanical stability of transition metals under tensile stress1–3. This phenomenon of 'hydrogen embrittlement' has important consequences for the safety of fusion reactors and for space technology; but there remains considerable uncertainty about its microscopic origin2, 3. Here we report the results of a study of fracture of hydrogen-loaded palladium under tensile stress which uses Parrinello–Rahman molecular dynamics based on a many-body alloy hamiltonian. A rather unexpected result is that the apparent hydrogen embrittlement results from a local enhancement of ductility in hydrogen-saturated regions of the metal which causes a reduction of the critical tensile stress at which failure occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beachem, C. D. Hydrogen Damage (American Society for Metals, Ohio, 1977).

    Google Scholar 

  2. Birnbaum, H. K., Grossbeck, M. & Gahr, S. in Hydrogen in Metals (eds Bernstein, M. & Thompson, A.) 303 (American Society for Metals, Ohio, 1973).

    Google Scholar 

  3. Birnbaum, H. K. in Environmentally Sensitive Fracture of Engineering Materials (ed. Foroulis, Z. A.) 326 (Metals Society, New York, 1979).

    Google Scholar 

  4. Steigerwald, E. A., Schaller, F. W. & Troiano, A. R. Trans. metall. Soc. A.I.M.E 218, 832 (1960).

    CAS  Google Scholar 

  5. Oriani, R. A. & Josephic, P. H. Acta metall. 22, 1065–1074 (1974).

    Article  CAS  Google Scholar 

  6. Oriani, R. A. & Josephic, P. H. Acta metall. 25, 979–988 (1977).

    Article  CAS  Google Scholar 

  7. Foiles, S. M., Baskes, M. I. & Daw, M. S. Phys. Rev. B33, 7983–7991 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Westlake, D. G. Trans. Am. Soc. Metals 62, 1000 (1969).

    CAS  Google Scholar 

  9. Birnbaum, H. K. J. Less Common Metals 104, 31–41 (1984).

    Article  CAS  Google Scholar 

  10. Beachem, C. D. Metall. Trans. 3, 437–451 (1972).

    CAS  Google Scholar 

  11. Tabata, T. & Birnbaum, H. K. Scripta metall. 18, 231–236 (1984).

    Article  CAS  Google Scholar 

  12. Lynch, S. P. J. Mater. Sci. 21, 692–704 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Tománek, D., Louie, S. G. & Chan, C. T. Phys. Rev. Lett. 57, 2594–2597 (1986).

    Article  ADS  Google Scholar 

  14. Sun, Z. & Tománek, D. Phys. Rev. Lett. 63, 59–62 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Tománek, D., Sun, Z. & Louie, S. G. Phys. Rev. B43, 4699–4713 (1991).

    Article  ADS  Google Scholar 

  16. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford, New York, 1990).

    MATH  Google Scholar 

  17. Parrinello, M. & Rahman, A. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Parrinello, M. & Rahman, A. J. appl. Phys. 52, 7182–7190 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Ray, J. R. & Rahman, A. J. chem. Phys. 80, 4423–4428 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Daw, M. S. & Baskes, M. I. Phys. Rev. Lett. 50, 1285–1288 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Daw, M. S. Phys. Rev. B39, 7441–7452 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Pratt, L. R. & Eckert, J. Phys. Rev. B39, 13170–13174 (1989).

    Article  CAS  Google Scholar 

  23. Landman, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Science 248, 454–461 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Zhong, W., Li, Y. S. & Tománek, D. Phys. Rev. B44, 13053–13062 (1991).

    Article  CAS  Google Scholar 

  25. Zhong, W., Cai, Y. & Tománek, D. Phys. Rev. B46, 8099–8108 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Kittel, C. Introduction to Solid State Physics 6th Edn (Wiley, New York, 1986).

    MATH  Google Scholar 

  27. Peisl, H. Hydrogen in Metals I. 53–74 (Springer. Berlin, 1978).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Cai, Y. & Tománek, D. Computer simulation of hydrogen embrittlement in metals. Nature 362, 435–437 (1993). https://doi.org/10.1038/362435a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362435a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing