Pituitary hormone FSH directs the CREM functional switch during spermatogenesis

Abstract

THE CREM (cyclic AMP-responsive element modulator) gene encodes multiple regulators of the cAMP-transcriptional response by alternative splicing1. A developmental switch in CREM expression occurs during spermatogenesis, whereby CREM function is converted from an antagonist to an activator (CREMτ; ref. 2) which accumulates to extremely high levels from the premeiotic spermatocyte stage onwards. To define the physiological mechanisms controlling the CREM developmental switch, we have hypophysectomized rats and observed the extinction of CREMτ expression in testis, thereby demonstrating a central role of the pituitary-hypothalamic axis. We then used the seasonal-dependent modulation of spermatogenesis in hamsters to dissect the hormonal programme controlling this developmental process. By this approach, combined with direct administration of pituitary-derived hormones, we have established that follicle-stimulating hormone (FSH) is responsible for the CREM switch. FSH appears to regulate CREM expression by alternative polyadenylation, which results in a dramatic enhancement of transcript stability.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. Cell 64, 739–749 (1991).

  2. 2

    Foulkes, N. S., Mellström, B., Benusiglio, E. & Sassone-Corsi, P. Nature 355, 80–84 (1992).

  3. 3

    Santen, R. J. in Endocrinology and Metabolism (eds Felig, P., Baxter, J. D., Broadus, A. E. & Frohman, L. A.) 821–905 (McGraw-Hill, New York, 1987).

  4. 4

    Crowley, W. F. Jr et al. Rec. Progr. Horm. Res. 47, 27–67 (1991).

  5. 5

    Rubin, M. R., Toth, L. E., Patel, M. D., D'Eustacchio, P. & Nguyen-Huu, M. C. Science 233, 663–667 (1986).

  6. 6

    Reiter, R. J. Endocrin. Rev. 1, 109–131 (1980).

  7. 7

    Desjardins, C., Ewing, L. L. & Johnson, B. H. Endocrinology 89, 791–800 (1971).

  8. 8

    Pévet, P. Reprod. Nutr. Dev. 28, 575–578 (1988).

  9. 9

    Bartke, A. in The Hamster Reproduction and Behavior (ed. Siegel, M. I.) 73–98 (Plenum, New York, 1985).

  10. 10

    Jetton, A. E., Fallest, P. C., Dahl, K. D., Schwartz, N. B. & Turek, F. W. Endocrinology 129, 1025–1032 (1991).

  11. 11

    Shaw, G. & Kamen, R. Cell 46, 659–667 (1986).

  12. 12

    Habener, J. Molec. Endocrinol. 4, 1087–1094 (1990).

  13. 13

    Foulkes, N. S. & Sassone-Corsi, P. Cell 68, 411–414 (1992).

  14. 14

    Klemcke, H. G., Vensickle, M., Bartfe, SA., Amador, A. & Chandrashekar, V. Biol. Repr. 37, 356–370 (1987).

  15. 15

    Jégou, B. et al. in Spermatogenesis—Fertilization—Contraception (eds Nieschlag, E. & Habenicht, U.-F.) 57–95 (Schering Foundation Workshop 4, Springer, 1992).

  16. 16

    Johnson, P. A., Peschon, J. J., Yelick, P. C., Palmiter, R. D. & Hecht, N. Biochem. biophys. Acta 950, 45–53 (1988).

  17. 17

    Raynaud, F. & Pévet, P. J. neur. Transm. 83, 235–242 (1991).

  18. 18

    Vulliamy, T. J. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5171–5175 (1988).

  19. 19

    Marzluff, W. F. & Huang, R.-C. C. in Transcription and Translation—A Practical Approach (eds Hames, B. D. & Higgins, S. J.) (IRL, Oxford, 1986).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.