Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro

Abstract

PHEROMONE-STIMULATED haploid yeast cells undergo a differentiation process that allows them to mate1. Transmission of the intracellular signal involves threonine and tyrosine phosphorylation of the redundant FUS3 and KSS1 kinases, which are members of the MAP kinase family2–4. FUS3/KSS1 phosphorylation depends on two additional kinases, STE11 and STE7 (refs 2, 5,6). Genetic analyses predict an ordered pathway where STE11 acts before STE7 and FUS3/KSS1 (refs 2,7). Here we report that STE7 is a dual-specificity kinase that modifies FUS3 at the appropriate sites and stimulates its catalytic activity in vitro. From these data and previous genetic results, we argue that STE7 is the physiological activator of FUS3. Recent indications that MAP kinase activators are related to STE7 suggest that signal transduction pathways in many, if not all, eukaryotic organisms use homologous kinase cascades8–10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marsh, L., Neiman, A. M. & Herskowitz, I. A. A. Rev. Cell Biol. 7, 699–728 (1991).

    Article  CAS  Google Scholar 

  2. Gartner, A., Nasmyth, K. & Ammerer, G. Genes Dev. 6, 1280–1292 (1992).

    Article  CAS  Google Scholar 

  3. Elion, M. E., Brill, J. A. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 88, 9392–9396 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Boulton, T. G. et al. Science 249, 476–489 (1990).

    Article  Google Scholar 

  5. Rhodes, N. L., Conell, L. & Errede, B. Genes Dev. 4, 1862–1874 (1990).

    Article  CAS  Google Scholar 

  6. Teague, M. A., Chaleff, D. T. & Errede, B. Proc. natn. Acad. Sci. U.S.A. 83, 7371–7375 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Stevenson, B. J., Rhodes, N., Errede, B. & Sprague, G. F. Jr Genes Dev. 6, 1293–1304 (1992).

    Article  CAS  Google Scholar 

  8. Kosado, H. et al. EMBO J. 11, 2903–2908 (1992).

    Article  Google Scholar 

  9. Nakielny, S., Campbell, D. G. & Cohen, P. FEBS Lett. 308, 183–189 (1992).

    Article  CAS  Google Scholar 

  10. Wu, J. et al. Biochem. J. 285, 701–705 (1992).

    Article  CAS  Google Scholar 

  11. Lindberg, R. A., Quinn, A. M. & Hunter, T. Trends biochem. Sci. 17, 114–119 (1992).

    Article  CAS  Google Scholar 

  12. Chang, F. & Herskowitz, I. Cell 63, 999–1011 (1990).

    Article  CAS  Google Scholar 

  13. Howe, L. R. et al. Cell 71, 355–342 (1992).

    Article  Google Scholar 

  14. Smith, D. B. & Johnson, K. S. Gene 61, 31–40 (1988).

    Article  Google Scholar 

  15. Surana, U. et al. Cell 65, 145–161 (1991).

    Article  CAS  Google Scholar 

  16. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Geitz, R. D. & Sugino, A. Gene 74, 527–534 (1988).

    Article  Google Scholar 

  19. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Molec. cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

  20. Zhou, Z., Gartner, A., Cade, R., Ammerer, G. & Errede, B. Molec. cell. Biol. (in the press).

  21. Crews, C. M., Alessandrini, A. & Erickson, R. L. Science 258, 478–480 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errede, B., Gartner, A., Zhou, Z. et al. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362, 261–264 (1993). https://doi.org/10.1038/362261a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362261a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing