Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pC02

Abstract

THE marine invertebrate Riftia pachyptila has a remarkable symbiosis with intracellular carbon-fixing sulphide-oxidizing bacteria which was first discovered at 2,450m depth on the Galapagos Rift1–4. Such symbiotic arrangements have since been found in a variety of invertebrate taxa and habitats5,6. Studies of these symbioses have focused on temperature, sulphide and oxygen as critical environmental parameters5,7–9. As Riftia has a high growth rate and its symbionts are far removed from the host surface10,11, inorganic carbon supply to the symbionts has been recognized as a problem and host mechanisms to concentrate inorganic carbon have been posited12,13. Increased environmental CO2 partial pressure (pCO2) has not seriously been considered as a critical environmental parameter7,14. Here we report that elevated pCO2 (2.9 kPa) in the worms' environment is a determinant of internal total CO2 (σ2CO2) and pCO2, facilitating CO2 transport and diffusion to the symbionts. We propose that elevated pCO2 is a potentially critical environmental factor for this species as well as for other chemoautotrophic symbioses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Felbeck, H., Somero, G. N. & Childress, J. J. Nature 293, 291–293 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Felbeck, H. Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Fisher, C. R. Crit. Rev. aquat. Sci. 2, 399–436 (1990).

    CAS  Google Scholar 

  6. Tunnicliffe, V. Oceanogr. mar. Biol. A. Rev. 29, 319–407 (1991).

    Google Scholar 

  7. Childress, J. J. & Fisher, C. R. Oceanogr. mar. Biol. A. Rev. 30, 337–441 (1992).

    Google Scholar 

  8. Fisher, C. R. et al. Deep Sea Res. 35, 1745–1758 (1988).

    Article  ADS  Google Scholar 

  9. Johnson, K. S., Childress, J. J., Hessler, R. R., Sakamoto-Arnold, C. M. & Beehler, C. L. Deep Sea Res. 35, 1723–1744 (1988).

    Article  ADS  Google Scholar 

  10. Arp, A. J. & Childress, J. J. Physiol. Zool. 58, 38–45 (1985).

    Article  Google Scholar 

  11. Roux, M. et al. C. R. Acad. Sc. Paris (sér, III) 308, 121–127 (1989).

    Google Scholar 

  12. Felbeck, H. Physiol. Zool. 53, 272–281 (1985).

    Article  Google Scholar 

  13. Childress, J. J. et al. Biol. Bull. 180, 135–153 (1991).

    Article  CAS  Google Scholar 

  14. Fisher, C. R., Kennicutt II, M. C. & Brooks, J. M. Science 247, 1094–1096 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Raven, J. A. Can. J. Bot. 69, 908–924 (1991).

    Article  CAS  Google Scholar 

  16. Jones, M. L. Proc. Biol. Soc. Wash. 93, 1295–1313 (1981).

    Google Scholar 

  17. Jones, M. L. Science 213, 333–336 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Arp, A. J., Childress, J. J. & Fisher, C. R. Jr, Bull. Biol. Soc. Wash. 6, 289–300 (1985)

    Google Scholar 

  19. Arp, A. J., Childress, J. J. & Vetter, R. D. J. exp. Biol. 128, 139–158 (1987).

    CAS  Google Scholar 

  20. Arp, A. J., Doyle, M. L., Di Cera, E. & Gill, S. J. Resp. Physiol. 80, 323–334 (1990).

    Article  CAS  Google Scholar 

  21. Childress, J. J., Arp, A. J. & Fisher, C. R. Jr Mar. Biol. 83, 109–124 (1984).

    Article  CAS  Google Scholar 

  22. Von Damm, K. L. A. Rev. Earth planet. Sci. 18, 173–204 (1990).

    Article  ADS  Google Scholar 

  23. Johnson, K. S., Childress, J. J. & Beehler, C. L. Deep Sea Res. 35, 1711–1722 (1988).

    Article  ADS  Google Scholar 

  24. Kochevar, R. E., Govind, N. S. & Childress, J. J. Molec. mar. Biol. Biotech. (in the press).

  25. Rau, G. H. Bull. Biol. Soc. Wash. 6, 243–248 (1985).

    Google Scholar 

  26. Van Dover, C. L. & Fry, B. Mar. Biol. 102, 257–263 (1989).

    Article  CAS  Google Scholar 

  27. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Earth planet. Sci. Lett. 22, 169–176 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Childress, J. J., Fisher, C. R., Favuzzi, J. A. & Sanders, N. K. Physiol. Zool. 64, 1444–1470 (1991).

    Article  CAS  Google Scholar 

  29. Quetin, L. B. & Childress, J. J. Deep Sea Res. 27, 383–391 (1980).

    Article  ADS  Google Scholar 

  30. Boutilier, R. G., Heming, T. A. & Iwama, G. K. in Fish Physiology (eds Hoar, W. S. & Randall, D. J.) 401–430 (Academic, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, J., Lee, R., Sanders, N. et al. Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pC02. Nature 362, 147–149 (1993). https://doi.org/10.1038/362147a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362147a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing