Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy

A Correction to this article was published on 19 August 1993

Abstract

WILD-TYPE reverse transcriptase has evolved for the survival of human immunodeficiency virus type 1 (HIV-1) by natural selection1. In contrast, therapy relying on inhibitors of reverse transcriptase by nucleosides like zidovudine (AZT) or dideoxyinosine (ddl), and by non-nucleosides like pyridinones or nevirapine2–6, may exert different selection pressures on this enzyme. Therefore the acquisition of resistance to reverse transcriptase inhibitors by selection of mutations in the pol gene7–15 may require compromises in enzyme function that affect viral replication. As single mutations are unlikely to confer broad resistance when combinations of reverse transcriptase inhibitors are used, multiple mutations may occur that result in further compromises. Certain drug combinations may prevent the co-existence of adequate reverse transcription function and multi-drug resistance (MDR). Unlike bacterial or eukaryotic drug resistance, retroviral drug resistance is conferred only by mutations in its own genome16 and is limited by genome size. Combining drugs directed against the same essential viral protein may thus prevent HIV-1 MDR, whereas the conventional approach of targeting different HIV-1 proteins for combination therapy may not, because genomes with resistance mutations in different HIV-1 genes might recombine to develop MDR17. Here we show that several mutations in the HIV-1 reverse transcriptase gene that confer resistance to inhibitors of this enzyme can attenuate viral replication. We tested whether combinations of mutations giving rise to single-agent resistance might further compromise or even abolish viral replication, and if multidrug-resistant viruses could be constructed. Certain combinations of mutations conferring resistance to AZT, ddl and pyridinone are incompatible with viral replication. These results indicate that evolutionary limitations exist to restrict development of MDR. Furthermore, a therapeutic strategy exploiting these limitations by using selected multidrug regimens directed against the same target may prevent development of MDR. This approach, which we call convergent combination therapy, eliminated HIV-1 replication and virus breakthrough in vitro, and may be applicable to other viral targets. Moreover, elimination of reverse transcription by convergent combination therapy may also limit MDR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Temin, H. M. J. AIDS 2, 1–9 (1989).

    CAS  Google Scholar 

  2. Pauwels, R. et al. Nature 343, 470–474 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Merluzzi, V. J. et al. Science 250, 1411–1413 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Goldman, M. E. et al. Proc. natn. Acad. Sci. U.S.A. 88, 6863–6867 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Romero, D. L. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8806–8810 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Balzarini, J. et al. Antimicrob. Ag. Chemother. 36, 1073–1080 (1992).

    Article  CAS  Google Scholar 

  7. Larder, B. A. & Kemp, S. D. Science 246, 1155–1158 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. St. Clair, M. H. et al. Science 253, 1557–1559 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Nunberg, J. H. et al. J. Virol. 65, 4887–4892 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Richman, D. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11241–11245 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Prasad, V. R., Lowy, I., De Los Santos, T., Chiang, L. & Goff, S. P. Proc. natn. Acad Sci. U.S.A. 88, 11363–11367 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Mellors, J. W. et al. Molec. Pharmac. 41, 446–451 (1992).

    CAS  Google Scholar 

  13. Kellam, P., Boucher, C. A. B. & Larder, B. A. Proc. natn. Acad. Sci. U.S.A. 89, 1934–1938 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Gao, Q., Gu, Z., Parniak, M. A., Li, X. & Wainberg, M. A. J. Virol. 66, 12–19 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fitzgibbon, J. E. et al. Antimicrob. Ag. Chemother. 36, 153–157 (1992).

    Article  CAS  Google Scholar 

  16. Coen, D. M. J. Antimicrob Chemother. 18, Suppl. B 1–10 (1986)

    Article  CAS  PubMed  Google Scholar 

  17. Hu, W.-S. & Temin, H. M. Science 250, 1227–1233 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Eron, J. J., Gorczyca, P., Kaplan, J. C. & D'Aquila, R. T. Proc. natn. Acad. Sci. U.S.A. 89, 3241–3255 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Boucher, C. A. B. et al. J. infect. Dis. 165, 105–110 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Albert, J. et al. J. Virol. 66, 5627–5630 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Land, S., McGavin, C., Lucas, R. & Birch, C. J. infect. Dis. 166, 1139–1142 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Larder, B. A., Kemp, S. D. & Purifoy, D. J. M. Proc. natn. Acad. Sci. U.S.A. 86, 4803–4807 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Johnson, V. A., Barlow, M. A., Merrill, D. P., Chou, T.-C. & Hirsch, M. S. J. infect Dis. 161, 1057–1067 (1990).

    Google Scholar 

  24. Yarchoan, R., Mitsuya, H., Myers, C. E. & Broder, S. New Engl. J. Med. 321, 726–738 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Ratner, L. et al. AIDS Res. hum. Retrovir. 3, 57–69 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Kornfeld, H., Riedel, N., Viglianti, G. A., Hirsch, V. & Mullins, J. I. Nature 326, 610–613 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Aldovini, A. & Walker, B. Techniques in HIV Research (Stockton, New York, 1990).

    Book  Google Scholar 

  30. Johnson, V. A. et al. J. infect Dis. 164, 646–655 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, YK., Hirsch, M., Merrill, D. et al. Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy. Nature 361, 650–654 (1993). https://doi.org/10.1038/361650a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361650a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing